Patents by Inventor Eddy Y. Wong

Eddy Y. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10254360
    Abstract: A router (60), for use with magnetic resonance systems (10), selectively routes unique excitation signals, generated by a multi-channel radio-frequency (RF) amplifier, over transmission lines (Tx) to any one of a plurality of connection panels (66) which each accepts at least one RF coil assembly having multiple coil elements (20). Each connection panel (66) includes transceiver ports (68) for connecting at least one conductor (22,24) of the coil elements (20) to a corresponding transceiver channel (T/R). The router (60) selectively routes magnetic resonance signals received by the conductors (22,24) from the transceiver channels (T/R) to a multi-channel RF receiver (41). The coin elements may carry sine-mode currents or uniform currents.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: April 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michael A. Morich, Zhiyong Zhai, Eddy Y. Wong, Kevin Nieman, Nabeel M. Malik
  • Publication number: 20130106416
    Abstract: A router (60), for use with magnetic resonance systems (10), selectively routes unique excitation signals, generated by a multi-channel radio-frequency (RF) amplifier, over transmission lines (Tx) to any one of a plurality of connection panels (66) which each accepts at least one RF coil assembly having multiple coil elements (20). Each connection panel (66) includes transceiver ports (68) for connecting at least one conductor (22,24) of the coil elements (20) to a corresponding transceiver channel (T/R). The router (60) selectively routes magnetic resonance signals received by the conductors (22,24) from the transceiver channels (T/R) to a multi-channel RF receiver (41). The coin elements may carry sine-mode currents or uniform currents.
    Type: Application
    Filed: July 4, 2011
    Publication date: May 2, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Michael A. Morich, Zhiyong Zhai, Eddy Y. Wong, Kevin Nieman, Nabeel M. Malik
  • Patent number: 7596402
    Abstract: A probe suitable for attachment to, or incorporation in, a medical interventional device, such as a catheter, and which may be employed for tracking, imaging, or both, includes a first material having an MR resonance frequency distinct from a resonance frequency of a second material adjacent to the first material. The probe may include one or more coils, or it may be wireless, that is, it may have no coils. Some probe configurations are directed at tracking or imaging of vascular vessels or tissue, and configurations allow both tracking and imaging.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: September 29, 2009
    Assignee: Case Western Reserve University
    Inventors: Jeffrey L. Duerk, Daniel Elgort, Chris Flask, Claudia M. Hillenbrand, Jonathan S. Lewin, Eddy Y. Wong
  • Publication number: 20080221428
    Abstract: A new and improved method for tracking and/or spatial localization of an invasive device in Magnetic Resonance Imaging (MRI) is provided. The invention includes providing an invasive device including a marker having a chemically shifted signal source with a resonant frequency different from the chemical species of the subject to be imaged, applying a pulse sequence, detecting the resulting RF magnetic resonance signals, and determining the 3D coordinates of the marker. The invention also includes generating scan planes and reconstructing an image from the detected signals to generate an image having the marker contrasted from the subject. The invasive device includes a marker having a chemically shifted signal source which has a resonant frequency different from the chemical species of the subject to be imaged for use in tracking the device during imaging.
    Type: Application
    Filed: May 15, 2003
    Publication date: September 11, 2008
    Inventors: Christopher A. Flask, Jonathan S. Lewin, Daniel R. Elgort, Ken-Pin Hwang, Eddy Y. Wong, Jeffrey L. Duerk
  • Publication number: 20040124838
    Abstract: An device for use with an MR imaging system emits radio-frequency signals within a first range when acquiring data. A resonant circuit within the device includes a plurality of electrical components. An opto-electronic component within the device electrically communicates with the resonant circuit. The opto-electronic component is controlled to operate in a plurality of modes. The electrical components are not sensitive to the radio-frequency signals within the first range when the opto-electronic component is operating in one of the modes.
    Type: Application
    Filed: May 30, 2003
    Publication date: July 1, 2004
    Inventors: Jeffrey L Duerk, Michael Wendt, Eddy Y Wong, Jonathan Lewin