Patents by Inventor Edeline Fotheringham

Edeline Fotheringham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11803044
    Abstract: A spectral imaging device (1312) for capturing one or more, two-dimensional, spectral images (1313A) of a sample (1310) including (i) an image sensor (1328), (ii) an illumination source (1314), (iii) a beam path adjuster (1362), and (iv) a control system (1330). The illumination source (1314) that generates an illumination beam (1316) that is directed along an incident sample beam path (1360) at the sample (1310). The beam path adjuster (1362) selectively adjusts the incident sample beam path (1360).
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: October 31, 2023
    Assignee: Daylight Solutions, Inc.
    Inventors: Jeremy A. Rowlette, Miles James Weida, Edeline Fotheringham, Justin Kane, Rudy Bermudez, William Chapman
  • Publication number: 20230061661
    Abstract: A fluid analyzer (214) that analyzes a sample (12) includes an analyzer frame (236); a test cell assembly (242) that receives the sample (12); a laser assembly (238) that generates a laser beam (239A) a signal detector assembly (232) and a self-check assembly (230). The self-check assembly (230) includes (i) a check frame (230A); (ii) a check substance (230E) with known spectral characteristics; and (iii) a check frame mover (230B) that selectively moves the check frame (230A) between a self-check position (231 B) and a test position (231 A) relative to the analyzer frame (236). In the self-check position (231 B), the laser beam (239A) is directed through the check substance (230E) to evaluate the performance of the fluid analyzer (214). In the test position (231 A), the laser beam (239A) is directed through the sample (12) in the test cell assembly (242) to evaluate the sample (12).
    Type: Application
    Filed: January 28, 2021
    Publication date: March 2, 2023
    Inventors: H. T. Stinson, Rudy Bermudez, Mark Bermal, Jeremy Rowlette, David Francis Arnone, Edeline Fotheringham, Ronald Arp
  • Publication number: 20230049459
    Abstract: An assembly (10) for generating a laser beam (12) includes a beam steering assembly (18); a laser assembly (16) that is tunable over a tunable range; and a controller (20). The laser assembly (16) generates a laser beam (12) that is directed at the beam steering assembly (18). The controller (20) dynamically controls the beam steering assembly (18) to dynamically steer the laser beam (12) as the laser assembly (16) is tuned over at least a portion of the tunable range. As a result thereof, the laser beam (12) is actively steered along a desired beam path (12A) while the wavelength of the laser beam (12) is varied.
    Type: Application
    Filed: January 27, 2021
    Publication date: February 16, 2023
    Inventors: Justin Kane, Mark Bermal, Jeremy Rowlette, David Francis Arnone, Edeline Fotheringham, Ronald Arp
  • Publication number: 20220091403
    Abstract: A spectral imaging device (1312) for capturing one or more, two-dimensional, spectral images (1313A) of a sample (1310) including (i) an image sensor (1328), (ii) an illumination source (1314), (iii) a beam path adjuster (1362), and (iv) a control system (1330). The illumination source (1314) that generates an illumination beam (1316) that is directed along an incident sample beam path (1360) at the sample (1310). The beam path adjuster (1362) selectively adjusts the incident sample beam path (1360).
    Type: Application
    Filed: December 6, 2021
    Publication date: March 24, 2022
    Inventors: Jeremy A. Rowlette, Miles James Weida, Edeline Fotheringham, Justin Kane, Rudy Bermudez, William Chapman
  • Patent number: 10437033
    Abstract: A spectral imaging device (12) for generating an image (13A) of a sample (10) includes (i) an image sensor (30); (ii) a tunable light source (14) that generates an illumination beam (16) that is directed at the sample (10); (iii) an optical assembly (22) that collects light from the sample (10) and forms an image of the sample (10) on the image sensor (30); and (iv) a control system (32) that controls the tunable light source (14) and the image sensor (30). During a time segment, the control system (32) (i) controls the tunable light source (14) so that the illumination beam (16) has a center wavenumber that is modulated through a first target wavenumber with a first modulation rate; and (ii) controls the image sensor (30) to capture at least one first image at a first frame rate. Further, the first modulation rate is equal to or greater than the first frame rate.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 8, 2019
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Jeremy Rowlette, Edeline Fotheringham, Justin Kane, Mark V. Bermal, David Nichols, William Chapman
  • Patent number: 10365158
    Abstract: A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follows a beam path (16B) from the sample (10) to the image sensor (28). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), and controls the image sensor (28) to capture the data. Further, during the data acquisition time (346), an effective optical path segment (45) of the beam path (16B) is modulated.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: July 30, 2019
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Jeremy Rowlette, Edeline Fotheringham, William Chapman, Miles Weida, David Arnone
  • Publication number: 20180283946
    Abstract: A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follows a beam path (16B) from the sample (10) to the image sensor (28). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), and controls the image sensor (28) to capture the data. Further, during the data acquisition time (346), an effective optical path segment (45) of the beam path (16B) is modulated.
    Type: Application
    Filed: June 4, 2018
    Publication date: October 4, 2018
    Inventors: Jeremy Rowlette, Edeline Fotheringham, William Chapman, Miles Weida, David Arnone
  • Patent number: 9989412
    Abstract: A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follow a beam path (16B) from the sample (10) to the image sensor (28). The refractive, optical element (24A) is spaced apart a separation distance (42) from the sample (10) along the beam path (16B). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), controls the mover assembly (29) (24C) to modulate the separation distance (42), and controls the image sensor (28) to capture the data.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: June 5, 2018
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Jeremy Rowlette, Edeline Fotheringham, William Chapman, Miles Weida, David Arnone
  • Publication number: 20180100999
    Abstract: A spectral imaging device (12) for generating an image (13A) of a sample (10) includes (i) an image sensor (30); (ii) a tunable light source (14) that generates an illumination beam (16) that is directed at the sample (10); (iii) an optical assembly (22) that collects light from the sample (10) and forms an image of the sample (10) on the image sensor (30); and (iv) a control system (32) that controls the tunable light source (14) and the image sensor (30). During a time segment, the control system (32) (i) controls the tunable light source (14) so that the illumination beam (16) has a center wavenumber that is modulated through a first target wavenumber with a first modulation rate; and (ii) controls the image sensor (30) to capture at least one first image at a first frame rate. Further, the first modulation rate is equal to or greater than the first frame rate.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Inventors: Jeremy Rowlette, Edeline Fotheringham, Justin Kane, Mark V. Bermal, David Nichols, William Chapman
  • Patent number: 9780531
    Abstract: A laser assembly for generating an output beam includes a first module assembly, a second module assembly, and a module fastener assembly. The second module assembly is selectively movable relative to the first module assembly to selectively adjust a cavity length, and a pivot axis of a grating in the laser. Further, an arm assembly that retains the grating can be adjusted to adjust the cavity length, and to adjust the plane of the grating face. Moreover, the grating is movable relative to the arm assembly to align the grating.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: October 3, 2017
    Assignee: Daylight Solutions, Inc.
    Inventors: Miles Weida, David F. Arnone, Eric Kim, Edeline Fotheringham
  • Publication number: 20170025818
    Abstract: A laser assembly for generating an output beam includes a first module assembly, a second module assembly, and a module fastener assembly. The second module assembly is selectively movable relative to the first module assembly to selectively adjust a cavity length, and a pivot axis of a grating in the laser. Further, an arm assembly that retains the grating can be adjusted to adjust the cavity length, and to adjust the plane of the grating face. Moreover, the grating is movable relative to the arm assembly to align the grating.
    Type: Application
    Filed: October 6, 2016
    Publication date: January 26, 2017
    Inventors: Miles Weida, David F. Arnone, Eric Kim, Edeline Fotheringham
  • Patent number: 9496674
    Abstract: A laser assembly for generating an output beam includes a first module assembly, a second module assembly, and a module fastener assembly. The second module assembly is selectively movable relative to the first module assembly to selectively adjust a cavity length, and a pivot axis of a grating in the laser. Further, an arm assembly that retains the grating can be adjusted to adjust the cavity length, and to adjust the plane of the grating face. Moreover, the grating is movable relative to the arm assembly to align the grating.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: November 15, 2016
    Assignee: DAYLIGHT SOLUTIONS, INC.
    Inventors: Miles James Weida, David F. Arnone, Eric Kim, Edeline Fotheringham
  • Publication number: 20160301187
    Abstract: A laser assembly for generating an output beam includes a first module assembly, a second module assembly, and a module fastener assembly. The second module assembly is selectively movable relative to the first module assembly to selectively adjust a cavity length, and a pivot axis of a grating in the laser. Further, an arm assembly that retains the grating can be adjusted to adjust the cavity length, and to adjust the plane of the grating face. Moreover, the grating is movable relative to the arm assembly to align the grating.
    Type: Application
    Filed: August 28, 2013
    Publication date: October 13, 2016
    Inventors: Miles James Weida, David F. Arnone, Eric Kim, Edeline Fotheringham
  • Publication number: 20160209271
    Abstract: A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follow a beam path (16B) from the sample (10) to the image sensor (28). The refractive, optical element (24A) is spaced apart a separation distance (42) from the sample (10) along the beam path (16B). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), controls the mover assembly (29) (24C) to modulate the separation distance (42), and controls the image sensor (28) to capture the data.
    Type: Application
    Filed: March 25, 2016
    Publication date: July 21, 2016
    Inventors: Jeremy Rowlette, Edeline Fotheringham, William Chapman, Miles Weida, David Arnone
  • Patent number: 8467430
    Abstract: An external cavity laser assembly (10) that generates a light beam (12) includes a gain medium (14) and a diffraction grating (24). The gain medium (14) has a growth direction (14C), a fast axis (14A), a first facet (34A), and a second facet (34B) that is spaced apart from the first facet (34A). The gain medium (14) emits from both facets (34A) (34B). Further, a beam polarization (30) of the light beam (32) emitting from the second facet (34B) is perpendicular to the growth direction (14C) and the fast axis (14A). The grating (24) includes a plurality of grating ridges (24A) that are oriented parallel to the beam polarization (30). Moreover, each of the grating ridges (24A) can have a substantially rectangular shaped cross-sectional profile.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 18, 2013
    Assignee: Daylight Solutions, Inc.
    Inventors: David P. Caffey, Michael Radunsky, Edeline Fotheringham, Michael Pushkarsky
  • Publication number: 20120076160
    Abstract: An external cavity laser assembly (10) that generates a light beam (12) includes a gain medium (14) and a diffraction grating (24). The gain medium (14) has a growth direction (14C), a fast axis (14A), a first facet (34A), and a second facet (34B) that is spaced apart from the first facet (34A). The gain medium (14) emits from both facets (34A) (34B). Further, a beam polarization (30) of the light beam (32) emitting from the second facet (34B) is perpendicular to the growth direction (14C) and the fast axis (14A). The grating (24) includes a plurality of grating ridges (24A) that are oriented parallel to the beam polarization (30). Moreover, each of the grating ridges (24A) can have a substantially rectangular shaped cross-sectional profile.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 29, 2012
    Inventors: David P. Caffey, Michael Radunsky, Edeline Fotheringham, Michael Pushkarsky
  • Patent number: 7710624
    Abstract: Holographic systems which shape coherent light beams are disclosed. These holographic systems may beam-shaping devices positioned in the path of coherent light beams to shape a coherent light beam into an essentially diffraction noise free coherent light beam of predetermined dimensions that has a continuous light beam profile of distinct intensity zones.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: May 4, 2010
    Assignee: InPhase Technologies, Inc.
    Inventors: Edeline Fotheringham, Ken E. Anderson, Larry Fabiny, Alan Hoskins
  • Publication number: 20060274393
    Abstract: Aspects of the present invention are generally directed to shaping coherent light beams used in a holographic system. Embodiments of the present invention are directed to beam-shaping devices positioned in the path of coherent light beams used in a holographic system to shape a coherent light beam into an essentially diffraction noise free coherent light beam of predetermined dimensions that has a continuous light beam profile of distinct intensity zones.
    Type: Application
    Filed: May 25, 2006
    Publication date: December 7, 2006
    Applicant: InPhase Technologies, Inc.
    Inventors: Edeline Fotheringham, Ken Anderson, Larry Fabiny, Alan Hoskins