Patents by Inventor Edgar Müller

Edgar Müller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230191452
    Abstract: The present invention relates to the field of protecting value documents and value commercial goods against counterfeit and illegal reproduction. In particular, the present invention provides processes for producing optical effect layers (OELs) comprising non-spherical magnetic or magnetizable particles and comprising a motif made of at least two areas made of a single applied and cured layer, said motif being obtained by using a selective curing performed by irradiation with an actinic radiation LED source (x41) comprising an array of individually addressable actinic radiation emitters.
    Type: Application
    Filed: February 15, 2023
    Publication date: June 22, 2023
    Inventors: Evgeny LOGINOV, Mathieu SCHMID, Edgar MUELLER, Claude-Alain DESPLAND
  • Patent number: 11660902
    Abstract: The present invention relates to the field of optical effect layers (OEL) including magnetically oriented non-spherical oblate magnetic or magnetizable pigment particles on a substrate, spinneable magnetic assemblies and processes for producing optical effect layers (OEL). In particular, the present invention relates to spinneable magnetic assemblies and processes for producing OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: May 30, 2023
    Assignee: SICPA HOLDING SA
    Inventors: Cédric Amerasinghe, Edgar Mueller, Evgeny Loginov, Mathieu Schmid, Claude-Alain Despland
  • Patent number: 11618053
    Abstract: The present invention relates to the field of protecting value documents and value commercial goods against counterfeit and illegal reproduction. In particular, the present invention provides processes for producing optical effect layers (OELs) comprising non-spherical magnetic or magnetizable particles and comprising a motif made of at least two areas made of a single applied and cured layer, said motif being obtained by using a selective curing performed by irradiation with an actinic radiation LED source (x41) comprising an array of individually addressable actinic radiation emitters.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 4, 2023
    Assignee: SICPA HOLDING SA
    Inventors: Evgeny Loginov, Mathieu Schmid, Edgar Mueller, Claude-Alain Despland
  • Patent number: 11577273
    Abstract: The invention relates to the field of the protection of security documents such as for example banknotes and identity documents against counterfeit and illegal reproduction. In particular, the present invention provides processes for optical effect layers (OEL) exhibiting two or more nested indicia using a magnetic assembly comprising i) a soft magnetic plate (x31) comprising a) one or more voids (V) and b) one or more indentations (I) and/or one or more protrusions (P), and ii) one or more dipole magnets (x32).
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: February 14, 2023
    Assignee: SICPA HOLDING SA
    Inventors: Neda Nikseresht Ghanepour, Edgar Mueller, Mathieu Schmid, Claude-Alain Despland
  • Patent number: 11420230
    Abstract: The present invention relates to the field of optical effect layers (OEL) comprising magnetically oriented non-spherical oblate magnetic or magnetizable pigment particles on a substrate, spinneable magnetic assemblies and processes for producing said optical effect layers (OEL). In particular, the present invention relates to spinneable magnetic assemblies and processes for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: August 23, 2022
    Assignee: SICPA HOLDING SA
    Inventors: Cédric Amerasinghe, Edgar Mueller, Evgeny Loginov, Mathieu Schmid, Claude-Alain Despland
  • Publication number: 20220226882
    Abstract: What is described is the use of a particulate material comprising, as its sole constituent or as one of multiple constituents, a particulate synthetic amorphous silicon dioxide having a particle size distribution with a median in the range from 0.1 to 0.4 ?m, determined by means of laser scattering, as additive for a molding material mixture at least comprising: a refractory mold base material having an AFS grain fineness number in the range from 30 to 100, particulate amorphous silicon dioxide having a particle size distribution with a median in the range from 0.7 to 1.5 ?m, determined by means of laser scattering, and water glass, for increasing the moisture resistance of a molding producible by hot curing of the molding material mixture. Also described are corresponding processes, mixtures and kits.
    Type: Application
    Filed: May 14, 2020
    Publication date: July 21, 2022
    Applicant: HÜTTENES-ALBERTUS Chemische Werke GmbH
    Inventors: Lukas Mirko REINOLD, Christian LUSTIG, René VARGOVIC, Edgar MÜLLER
  • Publication number: 20220088635
    Abstract: The present invention relates to the field of protecting value documents and value commercial goods against counterfeit and illegal reproduction. In particular, the present invention provides processes for producing optical effect layers (OELs) comprising non-spherical magnetic or magnetizable particles and comprising a motif made of at least two areas made of a single applied and cured layer, said motif being obtained by using a selective curing performed by irradiation with an actinic radiation LED source (x41) comprising an array of individually addressable actinic radiation emitters.
    Type: Application
    Filed: December 27, 2019
    Publication date: March 24, 2022
    Inventors: Evgeny LOGINOV, Mathieu SCHMID, Edgar MUELLER, Claude-Alain DESPLAND
  • Publication number: 20210319937
    Abstract: The invention relates to the field of the protection of security documents such as for example banknotes and identity documents against counterfeit and illegal reproduction. In particular, the present invention provides processes for optical effect layers (OEL) exhibiting one or more indicia using a magnetic assembly comprising i) a soft magnetic plate (x31) comprising a) one or more voids (V) and b) one or more dipole magnets (x32-a), wherein the one or more dipole magnets (x32-a) are disposed within the one or more voids (V) and/or are facing said one or more voids (V), and/or one or more pairs of two dipole magnets (x32-b), wherein the dipole magnets (x32-b) of the one or more pairs are disposed below the soft magnetic plate (x31) and are spaced apart from the one or more voids (V).
    Type: Application
    Filed: July 26, 2019
    Publication date: October 14, 2021
    Inventors: Neda NIKSERESHT GHANEPOUR, Mathieu SCHMID, Claude-Alain DESPLAND, Edgar MUELLER
  • Publication number: 20210308718
    Abstract: The invention relates to the field of the protection of security documents such as for example banknotes and identity documents against counterfeit and illegal reproduction. In particular, the present invention provides processes for optical effect layers (OEL) exhibiting two or more nested indicia using a magnetic assembly comprising i) a soft magnetic plate (x31) comprising a) one or more voids (V) and b) one or more indentations (I) and/or one or more protrusions (P), and ii) one or more dipole magnets (x32).
    Type: Application
    Filed: June 18, 2019
    Publication date: October 7, 2021
    Inventors: Neda NIKSERESHT GHANEPOUR, Edgar MUELLER, Mathieu SCHMID, Claude-Alain DESPLAND
  • Patent number: 11110487
    Abstract: The present invention relates to the field of apparatuses and methods of producing optical effect layers (OEL) comprising magnetically oriented magnetic or magnetizable pigment particles. In particular, the present invention relates to apparatuses comprising a first block (A) comprising a holder (1a) having mounted thereto a stator comprising n magnet-wire coils (1b) disposed in n annular slots of a magnetic-field-guiding stator core (1c), and a second block (B) comprising a casing (4), a rotor protection plate (2), a rotor comprising m permanent magnet poles (3a) of alternating polarity arranged around a circle in or on one side of a rotor disc (3b), and a permanent magnet assembly (PMA) (5), wherein the holder (A) is configured to be removeably fixed to a base of a rotating magnetic orienting cylinder (RMC) or a flatbed (FB) magnetic orienting printing unit and the second block (B) is removeably fixed to the first block (A).
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: September 7, 2021
    Assignee: SICPA HOLDING SA
    Inventors: Edgar Mueller, Evgeny Loginov, Mathieu Schmid
  • Patent number: 11092658
    Abstract: In a method for controlling a magnetic resonance imaging system as part of functional magnetic resonance imaging, a main magnetic field B0 is provided having a field strength of at most 1.4 tesla at a main field magnet system (4) of the magnetic resonance imaging system (1); and a measurement is performed as part of functional magnetic resonance imaging, wherein a measurement sequence (MS) is applied that has a longer echo time TE (e.g. longer than 100 ms).
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 17, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Edgar Mueller, Andreas Greiser, Peter Speier
  • Publication number: 20210221022
    Abstract: A method is provided for operating a hand-guided processing device that has a rotating and/or circulating cutting tool, an electric motor drive system wherein the electric motor drive system is configured for generating a torque for driving the cutting tool, and a user-operable control element. The method automatically monitors whether a blocking criterion is fulfilled, wherein the blocking criterion is characteristic of a blocking of the cutting tool, and if the blocking criterion is fulfilled and the control element operated, automatically lowers the torque generated by the electric motor drive system, and temporally thereafter, automatically increases the torque generated by the electric motor drive system.
    Type: Application
    Filed: January 21, 2021
    Publication date: July 22, 2021
    Inventors: Alexander HAAS, Edgar MUELLER, Christian Nemec
  • Patent number: 11065906
    Abstract: The present invention relates to the field of optical effect layers (OEL) comprising magnetically oriented non-spherical oblate magnetic or magnetizable pigment particles on a substrate, spinneable magnetic assemblies and processes for producing said optical effect layers (OEL). In particular, the present invention relates to spinneable magnetic assemblies and processes for producing said OELs as anti-counterfeit means on security documents or security articles or for decorative purposes.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 20, 2021
    Assignee: SICPA HOLDING SA
    Inventors: Cédric Amerasinghe, Edgar Mueller, Evgeny Loginov, Mathieu Schmid, Claude-Alain Despland
  • Patent number: 10981215
    Abstract: A description is given of a method for producing a molding material mixture or for producing a molding material mixture and a molding therefrom, preferably casting molds or cores, for use in the foundry industry, where the molding material mixture comprises a mold base material and a solution or dispersion comprising lithium-containing waterglass, comprising the following steps: (1) producing or providing a kit at least comprising as separate components: (K1) an aqueous solution or dispersion comprising waterglass and (K2a) a first waterglass-free solution or dispersion comprising lithium ions in solution in water, and also preferably (K2b) a second waterglass-free solution or dispersion, preferably comprising lithium ions in solution in water with a lower concentration than in component (K2a), and thereafter (2) producing a mixture of the mold base material with a fraction of component (K1) and with a fraction of component (K2a), and also optionally with a fraction of component (K2b).
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 20, 2021
    Assignee: HÜTTENES-ALBERTUS CHEMISCHE WERKE GESELLSCHAFT MIT BESCHRÄNKTER HAFTUNG
    Inventors: Christian Lustig, Marcin Baldy, Edgar Müller, Lukas Mirko Reinold, Sabrina Maria Anderten, Maria Schweinefuß, René Vargovic
  • Patent number: 10935615
    Abstract: A magnet assembly for magnetic resonance imaging is used to generate the basic magnetic field with a strength needed to produce the steady state or equilibrium position of nuclei or nuclear spins in magnetic resonance imaging. This magnet, or a part thereof, is vibrated or tilted or otherwise periodically moved so as to change its position and thereby generate a time-varying gradient field, which is used to enter the acquired magnetic resonance signals as raw data into k-space.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 2, 2021
    Assignees: Yale University, Siemens Healthcare GmbH
    Inventors: Markus Vester, Peter Speier, Stefan Popescu, Edgar Mueller, Robert Todd Constable, Gigi Galiana
  • Patent number: 10914798
    Abstract: A method for estimating a coil sensitivity map for a magnetic resonance (MR) image includes providing a matrix A of sliding blocks of a 3D image of coil calibration data, calculating a left singular matrix V? from a singular value decomposition of A corresponding to ? leading singular values, calculating P=V?V?H, calculating a matrix that is an inverse Fourier transform of a zero-padded matrix P, and solving MHcr=(Sr)Hcr for cr, where cr is a vector of coil sensitivity maps for all coils at spatial location r, and M = ( ( 1 1 … 1 0 0 … 0 … … … 0 0 … 0 ) ? ( 0 0 … 0 1 1 … 1 … … … 0 0 … 0 ) ? ? … ? ? ( 0 0 … 0 0 0 … 0 … … … 1 1 … 1 ) ) .
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: February 9, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Jun Liu, Hui Xue, Marcel Dominik Nickel, Ti-chiun Chang, Mariappan S. Nadar, Alban Lefebvre, Edgar Mueller, Qiu Wang, Zhili Yang, Nirmal Janardhanan, Michael Zenge
  • Patent number: 10823793
    Abstract: A magnetic resonance scanner has a base, a C-arm mounted on the base, the C-arm having an inner surface curved in a C-shape, the C-shape defining a plane, a magnet mounted on the inner curved surface of the C-arm, the magnet generating a basic magnetic field for magnetic resonance imaging, and a drive mechanism mechanically connected to the magnet. The drive mechanism rotates the magnet around an axis that is orthogonal to the plane so as to selectively position the magnet in at least two magnet positions that are respectively above and beneath a patient, who is situated in the C-arm along or parallel to the axis.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: November 3, 2020
    Assignees: Siemens Healthcare GmbH, Yale University
    Inventors: Stefan Popescu, Markus Vester, Peter Speier, Edgar Müller, Robert Todd Constable, Gigi Galiana
  • Publication number: 20200309878
    Abstract: A magnetic resonance scanner has a base, a C-arm mounted on said base, the C-arm having an inner surface curved in a C-shape, the C-shape defining a plane, a magnet mounted on said inner curved surface of said C-arm, the magnet generating a basic magnetic field for magnetic resonance imaging, and a drive mechanism mechanically connected to the magnet. The drive mechanism rotates the magnet around an axis that is orthogonal to said plane so as to selectively position said magnet in at least two magnet positions that are respectively above and beneath a patient, who is situated in the C-arm along or parallel to the axis.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicants: Siemens Healthcare GmbH, Yale University
    Inventors: Stefan Popescu, Markus Vester, Peter Speier, Edgar Müller, Robert Todd Constable, Gigi Galiana
  • Publication number: 20200309877
    Abstract: A magnet assembly for magnetic resonance imaging is used to generate the basic magnetic field with a strength needed to produce the steady state or equilibrium position of nuclei or nuclear spins in magnetic resonance imaging. This magnet, or a part thereof, is vibrated or tilted or otherwise periodically moved so as to change its position and thereby generate a time-varying gradient field, which is used to enter the acquired magnetic resonance signals as raw data into k-space.
    Type: Application
    Filed: March 27, 2019
    Publication date: October 1, 2020
    Applicants: Siemens Healthcare GmbH, Yale University
    Inventors: Markus Vester, Peter Speier, Stefan Popescu, Edgar Mueller, Robert Todd Constable, Gigi Galiana
  • Patent number: 10768256
    Abstract: In a method for displaying quantitative magnetic resonance image data, and a processor, and a magnetic resonance (MR) apparatus that implement such a method, first quantitative MR image data of an examination object are provided to the processor, the first quantitative MR image having been obtained using an MR scanner with a first basic magnetic field strength. The first quantitative magnetic resonance image data are converted in the processor from the first basic magnetic field strength to a second basic magnetic field strength, thereby generating second quantitative MR image data, which are then displayed.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 8, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Berthold Kiefer, Lars Lauer, Heiko Meyer, Edgar Mueller, Elmar Rummert, David Grodzki