Patents by Inventor Edgar Ramos

Edgar Ramos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10880793
    Abstract: A wireless communication device (16) is configured for use in a wireless communication system. The device (16) in this regard is configured to receive a command (22) that commands the device (16) to perform a link switch (24) from a source link (20A) to a target link (20B) responsive to fulfillment of a condition. The command (22) may indicate a target link configuration (26) relative to a source link configuration. The device (16) is also configured to store information (30) from which the target link configuration (26) indicated by the command (22) is determinable irrespective of any change to the source link configuration occurring after receipt of the command (22). In some embodiments, the device (16) is configured to, responsive to fulfillment of the condition, perform a link switch (24) from the source link (20A) to the target link (20B) using the target link configuration (26) as determined from the stored information (30).
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: December 29, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Riikka Susitaival, Icaro L. J. Da Silva, Janne Peisa, Edgar Ramos, Henning Wiemann
  • Patent number: 10784941
    Abstract: According to some embodiments, a method for use in a network node of transmitting reference signals in a wireless network using a plurality of beams comprises obtaining a node identifier for the network node. The node identifier is unique for neighboring network nodes within a particular coverage area of the wireless network. The method further comprises obtaining a group of reference signal sequences. The group comprises a subset of a pool of possible reference signal sequences for use in the wireless network. Each reference signal sequence is associated with a beam reference identifier. The method further comprises selecting a reference signal sequence from the obtained group: scrambling a reference signal transmission pattern using the obtained node identifier and the selected reference signal sequence with associated beam reference identifier; and transmitting the scrambled reference signal transmission pattern to a user equipment on one of the beams among the plurality of beams.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: September 22, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Pradeepa Ramachandra, Icaro L. J. Da Silva, Reza Moosavi, Edgar Ramos, Claes Tidestav, Umut Ugurlu
  • Patent number: 10708025
    Abstract: There is provided a method for selectively enabling periodic transmission of reference signals in a wireless communication network. The method comprises obtaining (S1) information of user activity in one or more beams, cells or sector, and performing (S2) at least one of activating and deactivating, for at least one beam, cell or sector, periodic transmission of reference signals based on the obtained information.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: July 7, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Umut Ugurlu, Rui Fan, Qingyu Miao, Edgar Ramos, Hai Wang
  • Patent number: 10645662
    Abstract: A wireless communication device in a cellular wireless communication system activates (402) radio receiver circuitry during repeated time windows. The repeated activation has a nominal repetition time interval, T, and each repeated time window has a window duration, DT. During each DT, detection (404) is made of a plurality of synchronization signals that are transmitted by a respective cell. Based on the detected synchronization signals, calculation (406) is made of a respective cell quality value. These calculated quality values are then provided (408) to a mobility process. Depending (410) on the calculated quality values and at least a first quality threshold, any of T and DT are adjusted (412).
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: May 5, 2020
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Claes Tidestav, Joakim Axmon, Bengt Lindoff, Reza Moosavi, Edgar Ramos
  • Publication number: 20200136707
    Abstract: According to some embodiments, a method for use in a network node of transmitting reference signals in a wireless network using a plurality of beams comprises obtaining a node identifier for the network node. The node identifier is unique for neighboring network nodes within a particular coverage area of the wireless network. The method further comprises obtaining a group of reference signal sequences. The group comprises a subset of a pool of possible reference signal sequences for use in the wireless network. Each reference signal sequence is associated with a beam reference identifier. The method further comprises selecting a reference signal sequence from the obtained group: scrambling a reference signal transmission pattern using the obtained node identifier and the selected reference signal sequence with associated beam reference identifier; and transmitting the scrambled reference signal transmission pattern to a user equipment on one of the beams among the plurality of beams.
    Type: Application
    Filed: September 29, 2017
    Publication date: April 30, 2020
    Applicant: Telefonakiebolaget LM Ericsson (publ)
    Inventors: Pradeepa RAMACHANDRA, Icaro L. J. da SILVA, Reza MOOSAVI, Edgar RAMOS, Claes TIDESTAV, Umut UGURLU
  • Patent number: 10638253
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 28, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Patent number: 10623145
    Abstract: A network node, a wireless device and respective methods performed thereby for the network node to provide information to one or more wireless devices are provided. The network node and the wireless device are operable in a wireless communication network. The method performed by the network node comprises transmitting (120) a first message by means of broadcast indicating that a second message associated with the first message will be broadcasted after the transmission of the first message, the first message also indicating to the one or more wireless devices that feedback with regard to the second message is required should the second message not be received; and transmitting (130) the second message by means of broadcast.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: April 14, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Luis Felipe Del Carpio Vega, Jaime Jiménez, Edgar Ramos
  • Publication number: 20200084662
    Abstract: Some embodiments of this disclosure provide a method for optimizing the processing of logical channels when multiple transport formats are to be served. In certain aspects, instead of filling sequentially each transport format one by one, the protocol packets to be transmitted by the transport block are concurrently constructed. This may be accomplished, for instance, by taking into consideration the requirements of the data (for example, latency and reliability) to be transmitted as well as the characteristics of the available transport format (for example, size, expected channel quality, transmission length, etc.).
    Type: Application
    Filed: November 8, 2017
    Publication date: March 12, 2020
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Edgar RAMOS
  • Patent number: 10588131
    Abstract: The present disclosure provides a method (300) in a network node for dynamic resource allocation for control channels. The method (300) comprises: monitoring (S310) a control channel load on the network node; and adjusting (S320) resource allocation for control channels based on the control channel load.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: March 10, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Virgile Garcia, Edgar Ramos, Helka-Liina Määttanen, Robert Baldemair
  • Patent number: 10560949
    Abstract: A second communication device transmits information relating to a request for a first set of radio resources of a radio channel for a first data transmission to a third communication device. This information is received by a first communication device. In response thereto, the first communication device transmits an interference notification to the second communication device when the received information relating to a request for radio resources of the radio channel is determined to conflict with requested radio resources of the radio channel for a second data transmission to or from the first communication device. The second communication device receives an interference notification from the first communication device indicating that its transmitted information relating to a request for radio resources of the radio channel has been determined to conflict with requested radio resources of the radio channel for the second data transmission to or from the first communication device.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: February 11, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Zhan Zhang, Jonas Kronander, Jinhua Liu, Edgar Ramos
  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20190342872
    Abstract: Embodiments herein relate to a method performed by a radio network node (12) for facilitating beam selection for wireless devices in a wireless communications network. The radio network node obtains a first parameter indicating a mapping between an uplink signal, US, sequence and a beam-formed reference signal, RS, which mapping is for two or more wireless devices that are configured to perform measurements on beam-formed reference signals and to use US sequences to report selected beams, and a second parameter distinguishing the US sequence being reported from one wireless device from the US sequence being reported from one or more other wireless devices. The radio network node further receives an indication of the US sequence transmitted from one of the two or more wireless devices (10); and identifies the beam for the wireless device based on the received indication and the first and second parameters.
    Type: Application
    Filed: December 14, 2017
    Publication date: November 7, 2019
    Inventors: Johan Rune, Icaro L. J. da Silva, Qingyu Miao, Edgar Ramos, Andres Reial, Claes Tidestav, Zhang Zhang
  • Publication number: 20190281511
    Abstract: A wireless communication device (16) is configured for use in a wireless communication system. The device (16) in this regard is configured to receive a command (22) that commands the device (16) to perform a link switch (24) from a source link (20A) to a target link (20B) responsive to fulfillment of a condition. The command (22) may indicate a target link configuration (26) relative to a source link configuration. The device (16) is also configured to store information (30) from which the target link configuration (26) indicated by the command (22) is determinable irrespective of any change to the source link configuration occurring after receipt of the command (22). In some embodiments, the device (16) is configured to, responsive to fulfillment of the condition, perform a link switch (24) from the source link (20A) to the target link (20B) using the target link configuration (26) as determined from the stored information (30).
    Type: Application
    Filed: December 21, 2017
    Publication date: September 12, 2019
    Inventors: Riikka Susitaival, Icaro L. J. Da Silva, Janne Peisa, Edgar Ramos, Henning Wiemann
  • Publication number: 20190273583
    Abstract: There is provided a method for selectively enabling periodic transmission of reference signals in a wireless communication network. The method comprises obtaining (S1) information of user activity in one or more beams, cells or sector, and performing (S2) at least one of activating and deactivating, for at least one beam, cell or sector, periodic transmission of reference signals based on the obtained information.
    Type: Application
    Filed: December 20, 2016
    Publication date: September 5, 2019
    Inventors: Umut Ugurlu, Rui Fan, Qingyu Miao, Edgar Ramos, Hai Wang
  • Publication number: 20190261238
    Abstract: A wireless device in a wireless communication system is configured to perform measurements on a set of candidate links for supporting a network node in the system to make a decision as to which of the candidate links is to be a target link for a link switch. The wireless device reports (e.g., at the physical layer) measured candidate links one link subset at a time in order of the wireless device's preference for the target link, until the wireless device receives a target indication signal indicating which of the candidate links in the set is to be the target link. Any given link subset reports one or more candidate links which the wireless device has measured for the decision. Responsive to receiving the target indication signal, the wireless device performs the link switch to the indicated target link.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Inventors: Andres Reial, Qingyu Miao, Edgar Ramos, Johan Rune, Claes Tidestav, Zhang Zhang
  • Publication number: 20190261230
    Abstract: The present disclosure relates to methods and arrangements for performing wireless device assisted handover form a source access node to a target access node. Performed in a wireless device, the disclosure presents a method for performing wireless device assisted handover from a source access node to a target access node in a wireless network. The methed comprises performing (S31) one or more mobility measurements for corresponding candidate radio links and selecting (S32), from the one or more candidate radio links, an initial target link based on the performed one or more mobility measurements. A first radio link measurement report, based on the one or more mobility measurements, identifying the initial target link, is transmitted (S33) to the source target node using a first radio link reporting mechanism whereupon communication over the initial target link is initiated (S34).
    Type: Application
    Filed: September 30, 2016
    Publication date: August 22, 2019
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andres Reial, Rui Fan, Qingyu Miao, Edgar Ramos, Johan Rune, Claes Tidestav, Stefan Wager, Zhang Zhang
  • Publication number: 20190239129
    Abstract: The present invention relates to handling data transfer during handover, whereby a terminal device is initially connected to a serving access node and a handover is performed to connect the terminal device to a target access node. The improved handling of data transfer is achieved by upon making a handover decision, performing data rerouting to the target access node while continuing to exchange data between the terminal device and the serving access node, and stopping the data exchange between the terminal device and the serving access node in response to an indicator indicating that the target access node is ready to proceed with the handover.
    Type: Application
    Filed: October 11, 2016
    Publication date: August 1, 2019
    Inventors: Claes TIDESTAV, Edgar RAMOS, Andres REIAL, Johan RUNE, Zhang ZHANG
  • Patent number: 10367677
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 30, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rul Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskár, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanil Zheng