Patents by Inventor Edith Ong

Edith Ong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6835657
    Abstract: A method for manufacturing a semiconductor structure having an interlevel dielectric comprising (i) patterning features in the interlevel dielectric, (ii) depositing a metal into the features, and (iii) melting and recrystallizing metal in the features using a laser. Semiconductor structures having an interlevel dielectric that are made by the method. The recrystallizing step comprises exposing the metal in the features to a laser annealing protocol. The protocol includes exposing the metal to a laser having a predetermined wavelength selected from the range of 150 nm to 900 nm. In some instances, the laser used in the laser annealing protocol has an output pulse energy of about 1.0 joules/cm2 to about 4.0 joules/cm2. In some instances, the semiconductor structure is on a substrate and the recrystallizing step comprises simultaneously exposing the entire semiconductor structure to the laser.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: December 28, 2004
    Assignee: Applied Materials, Inc.
    Inventor: Edith Ong
  • Publication number: 20040104481
    Abstract: A method for manufacturing a semiconductor structure having an interlevel dielectric comprising (i) patterning features in the interlevel dielectric, (ii) depositing a metal into the features, and (iii) melting and recrystallizing metal in the features using a laser. Semiconductor structures having an interlevel dielectric that are made by the method. The recrystallizing step comprises exposing the metal in the features to a laser annealing protocol. The protocol includes exposing the metal to a laser having a predetermined wavelength selected from the range of 150 nm to 900 nm. In some instances, the laser used in the laser annealing protocol has an output pulse energy of about 1.0 joules/cm2 to about 4.0 joules/cm2. In some instances, the semiconductor structure is on a substrate and the recrystallizing step comprises simultaneously exposing the entire semiconductor structure to the laser.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 3, 2004
    Applicant: Applied Materials, Inc.
    Inventor: Edith Ong
  • Patent number: 5504043
    Abstract: In the manufacture of high temperature deposited aluminum contacts onto silicon substrates wherein a barrier layer of titanium nitride is used, the improvement wherein the titanium nitride contains oxygen. The improved contacts are made by depositing a titanium-containing layer onto a silicon substrate, performing a first, high temperature nitrogen anneal in vacuum to form a low resistance TiSi.sub.x contact to the silicon, and performing a second, lower temperature anneal in vacuum using a mixture of nitrogen and oxygen to stuff the titanium nitride layer. This stuffed titanium nitride layer provides an improved barrier to a subsequently deposited high temperature deposited aluminum layer.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: April 2, 1996
    Assignee: Applied Materials, Inc.
    Inventors: Kenny K. Ngan, Edith Ong
  • Patent number: 5378660
    Abstract: In the manufacture of high temperature deposited aluminum contacts onto silicon substrates wherein a barrier layer of titanium nitride is used, the improvement wherein the titanium nitride contains oxygen. The improved contacts are made by depositing a titanium-containing layer onto a silicon substrate, performing a first, high temperature nitrogen anneal in vacuum to form a low resistance TiSi.sub.x contact to the silicon, and performing a second, lower temperature anneal in vacuum using a mixture of nitrogen and oxygen to add oxygen to the titanium nitride layer. This oxygen-containing titanium nitride layer provides an improved barrier to a subsequently deposited high temperature deposited aluminum layer.
    Type: Grant
    Filed: February 12, 1993
    Date of Patent: January 3, 1995
    Assignee: Applied Materials, Inc.
    Inventors: Kenny K. Ngan, Edith Ong
  • Patent number: 5371042
    Abstract: An improved method of filling vias and openings in semiconductor devices comprises first faceting the top of the openings, depositing in sequence a barrier layer, as of TiN, treating the barrier layer to reduce its porosity, depositing a titanium-containing wetting layer, sputter depositing a first layer of aluminum at low temperatures and sputter depositing a second layer of aluminum at high temperatures to fill the opening and planarize the layer. The improved method is carried out preferably in a multichamber sputtering system.
    Type: Grant
    Filed: June 16, 1992
    Date of Patent: December 6, 1994
    Assignee: Applied Materials, Inc.
    Inventor: Edith Ong