Patents by Inventor Edmund O. Schweitzer, III

Edmund O. Schweitzer, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11125821
    Abstract: Systems and methods for testing a protection relay, such as a primary bus protection relay, may include a testing device for providing current signals imitating current on both sides of a bus to the primary bus protection relay. The signals may be provided using signals corresponding with a signal format from merging units or other monitoring devices. The testing device may be configured to receive communications from the primary bus protection relay for evaluation of the operation of the primary bus protection relay.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: September 21, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Tony J. Lee, David J. Casebolt, Krishnanjan Gubba Ravikumar, David Schmidt, Austin Edward Wade
  • Patent number: 11121536
    Abstract: Systems and methods for displaying electric power system metering information in a panel may use digitized signals from primary protection relays. The system may include multiple panel meters. One or more of the panel meters may receive the digitized signals using an electrically non-conductive communication media. In various embodiments, the panel may be electrically isolated from the primary protection relay. The panel may be hot swappable and may be connected to a primary protection relay while the relay is in continuous operation.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: September 14, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Krishnanjan Gubba Ravikumar, Austin Edward Wade
  • Patent number: 11119128
    Abstract: Systems and methods to test an electric power delivery system include a communication subsystem to transmit test signals to one or more merging units, a test subsystem to transmit a test data stream to the one or more merging units via the communication subsystem, and a processor subsystem to receive looped back data from the one or more merging unit in response to the transmitted test data stream and to determine an operating condition based on the looped back data.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: September 14, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Krishnanjan Gubba Ravikumar, Austin Edward Wade
  • Publication number: 20210278447
    Abstract: Electric power system voltage control and voltage stability may be calculated using energy packets. Sets of negative energy packet sets normalized by a set of positive and negative energy packet sets may be used for voltage control by adding or removing capacitive units. Energy packet voltage indicators may be calculated using energy packets, and used to determine voltage stability. Control actions may be taken depending on the determined voltage stability.
    Type: Application
    Filed: May 5, 2021
    Publication date: September 9, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Gregary C. Zweigle, Ellery A. Blood
  • Patent number: 11112466
    Abstract: The present disclosure pertains to devices, systems, and methods for monitoring an electric power system. In one embodiment, a system may detect a failure in an electric power system. The system may include a communication interface to receive a first indication related to a condition in the electric power system, and a second indication related to the condition. The system may also include a test subsystem to compare the first indication to the second indication and to determine a discrepancy between the first indication and the second indication. A diagnostic subsystem may identify the failure based on the discrepancy between the first indication and the second indication. An alert subsystem may generate an alert based on the failure.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: September 7, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Tony J. Lee, David E. Whitehead, David J. Casebolt, Krishnanjan Gubba Ravikumar, Austin Edward Wade, Lisa Gayle Nelms
  • Patent number: 11114892
    Abstract: Systems and methods including improving availability of protection of an electric power delivery system even upon unavailability of power system signals. Such protection relays may provide protection using signals from the power system and provide the signals to an integrator or another device. Upon unavailability of power system signals to a protection relay, the integrator sends substitute power system signals may be provided to the protection relay. The protection relay may continue to provide protection using the substitute power system signals.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: September 7, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Daqing Hou, David E. Whitehead, Tony J. Lee, Krishnanjan Gubba Ravikumar
  • Patent number: 11115311
    Abstract: The present disclosure relates to systems and methods for creating a data tunnel to communicate test data in a test configuration in an electric power system. In one embodiment, a remote unit may include a monitored equipment interface to receive information representative of a condition in the electric power system from a test set and a first test data port to communicate test data through the data tunnel in the test configuration. The remote unit may use a first communication subsystem to generate and transmit a stream of data packets comprising information from the monitored equipment interface and information from the first test data port to be routed through the data tunnel. A protection system may receive the stream of data packets from the first communication subsystem and separate information from the monitored equipment interface and information from the test data routed through the data tunnel.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: September 7, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Tony J. Lee, Lisa Gayle Nelms, Austin Edward Wade, Krishnanjan Gubba Ravikumar
  • Patent number: 11108737
    Abstract: Systems and methods may maintain protection of electric power delivery systems in the event of an attack on protection and/or control features of the power system. Primary protective functions may be physically isolated from other functions in primary protection relays. Integrators may facilitate non-primary protection functions and disconnect all communication with primary protection relays in the event of an attack. Primary protection relays maintain protection functions even during the attack or unavailability of the integrators.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: August 31, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Krishnanjan Gubba Ravikumar, Austin Edward Wade, Tony J. Lee, David J. Casebolt, David E. Whitehead
  • Patent number: 11105832
    Abstract: The present disclosure pertains to systems and methods for detecting traveling waves in electric power delivery systems. In one embodiment, a system comprises a capacitance-coupled voltage transformer (CCVT) in electrical communication with the electric power delivery system, the CCVT comprising a stack of capacitors and an electrical contact to a first ground connection. Electrical signals from accessible portions of the CCVT are used to detect traveling waves. Current and/or voltage signals may be used. In various embodiments, a single current may be used. The traveling waves may be used to detect a fault on the electric power delivery system.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: August 31, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Bogdan Z. Kasztenny, Veselin Skendzic, Travis C. Mallett, Robert Lopez, Jr.
  • Patent number: 11100595
    Abstract: Calculation of a value of energy passing a point of an electric power delivery system, and price associated with the value is disclosed herein. Use of energy packets according with the embodiments of this disclosure more accurately represents the amount of energy produced and consumed by equipment. Energy packets may be calculated over one or more phases, over configurable time periods. Energy packets may be used in conjunction with a monetary rate to calculate the price for billing an energy consumer or crediting an energy producer.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: August 24, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Gregary C. Zweigle, Dallas J. Jacobsen
  • Patent number: 11079436
    Abstract: Systems and methods testing a power protection relay include a merging unit to receive signals from an electric power delivery system. The merging unit includes a test signal input to receive test signals from a testing device, a relay output to output at least one of the test signals to a power protection relay, a distribution output to output at least another of the test signals to one or more additional merging units, and a switch subsystem to route the test signal to the relay output or the distribution output.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: August 3, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Krishnanjan Gubba Ravikumar, Austin Edward Wade
  • Patent number: 11067617
    Abstract: A line-mounted device is used to provide power system signals to a device for detecting a fault and calculating a fault location using a traveling wave launched thereby. Current at the line-mounted device is used to separate incident and reflected traveling waves at a terminal. Times and polarities of traveling waves passing the line-mounted device and the terminal are compared to determine if the fault is located between the terminal and line-mounted device or at a location beyond the terminal or line-mounted device. Voltage of the traveling wave may be calculated using currents from the line-mounted device.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 20, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Raymond W. Rice
  • Patent number: 11056082
    Abstract: The present disclosure pertains to systems and methods for generating a waterfall display to display a stream of high-speed data measurements. In one embodiment, a system may comprise a communication subsystem to receive a stream of high-speed data measurements. A waterfall generation subsystem may receive the stream of high-speed data measurements from the communication subsystem and identify a plurality of changes in the stream of high-speed data. A subset of data measurements may be selected that includes changes in the high-speed data. The changes may be highlighted through a plurality of modifications. A representation of the subset of data measurements in which changes are highlighted may be generated and presented at a rate below a perception threshold of a human operator. A waterfall display subsystem may generate a human-perceptible waterfall display to represent the stream of high-speed data measurements and the plurality of modifications.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: July 6, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, David J. Casebolt, Krishnanjan Gubba Ravikumar, Austin Edward Wade
  • Patent number: 11056874
    Abstract: An electric power delivery system may be protected upon occurrence of a fault condition by the systems and methods disclosed herein by detecting the fault condition and signaling a protective action before the overcurrent condition reaches the protective equipment. The protective action may be an opening of a circuit breaker or engagement of a fault current limiter. The overcurrent condition may be a non-steady-state condition. The fault may be detected using traveling wave or incremental quantity techniques.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: July 6, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Bogdan Z. Kasztenny, David E. Whitehead
  • Patent number: 11050234
    Abstract: Systems and methods for facilitating selected communications among primary protection relays using a supervisory system with a configurable input/output (IO) map. Primary protection relays may obtain signals from equipment associated with an electric power delivery system and provide primary protection without need for communication. The primary protection relays may communicate a unique identifier as well as signal values, states, and commands to the supervisory system. The supervisory system may route specifically identified communications among primary protection relays in accordance with a configurable IO map by transmitting selected portions of the communications on a port associated with the receiving primary protection relay. The primary protection relays may perform secondary protection and other operations using the communicated information.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: June 29, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Krishnanjan Gubba Ravikumar, Austin Edward Wade
  • Patent number: 11035891
    Abstract: Electric power system voltage control and voltage stability may be calculated using energy packets. Sets of negative energy packet sets normalized by a set of positive and negative energy packet sets may be used for voltage control by adding or removing capacitive units. Energy packet voltage indicators may be calculated using energy packets, and used to determine voltage stability. Control actions may be taken depending on the determined voltage stability.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: June 15, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Gregary C. Zweigle, Ellery A. Blood
  • Patent number: 11038336
    Abstract: Disclosed herein are systems for maintaining protection of electric power delivery systems in the event of a control power failure or other anomaly. A reliable power module conditions electric power from multiple independent sources and provides electrical operational power to electric power delivery system protective loads. The reliable power module includes an energy storage device for providing operational power even upon loss of all control power sources. The energy storage may be sufficient to ride through expected losses such as a time to start up backup generation. The energy storage may be sufficient to power a trip coil. Thus, electric power system protection is maintained even upon loss of control power. A discharge circuit is provided to allow an operator to de-energize an energy storage device.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: June 15, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, David J. Casebolt, Krishnanjan Gubba Ravikumar, Sean D. Robertson, Austin Edward Wade, Bruce A. Hall
  • Patent number: 11038342
    Abstract: The present disclosure pertains to systems and methods for analyzing traveling waves in an electric power delivery system. In one embodiment, a system may comprise a traveling wave identification subsystem to receive electric power system signals and identify a plurality of incident, reflected, and transmitted traveling waves. A first traveling wave may be selected from the incident and transmitted traveling waves, and a first distortion may be determined. A second traveling wave subsequent to the first traveling wave, may selected from the incident traveling waves and a second distortion may be determined. A traveling wave analysis subsystem may compare the first distortion and the second distortion and determine whether the first distortion is consistent with the second distortion. A protective action subsystem may implement a protective action based on a first determination that the first distortion is consistent with the second distortion.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: June 15, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Bogdan Z. Kasztenny
  • Patent number: 11031812
    Abstract: The present disclosure relates to powering distributed sensors used to monitor electrical and/or environmental conditions and to powering other equipment associated with electric power systems. In one embodiment, a system may be used to mount a sensor in proximity to a reference conductor. An electric field power conversion subsystem may generate a usable electric potential from an electric field created by the electric power system and existing between the reference conductor and another conductor (e.g., another phase conductor, a ground conductor). The sensor powered by the usable electric potential may provide a measurement of a condition associated with the electric power system. A communication subsystem powered by the usable electric potential may communicate the measurement of the condition to a monitoring system.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: June 8, 2021
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Joe Baylon, Timothy M. Minteer, David Kenny, James Mobley, Johnny J. Moore, Raymond W. Rice, Naiden K. Spasov, Eric M. Sawyer
  • Publication number: 20210167590
    Abstract: Disclosed herein are systems for maintaining protection of electric power delivery systems in the event of a control power failure or other anomaly. A reliable power module conditions electric power from multiple independent sources and provides electrical operational power to electric power delivery system protective loads. The reliable power module includes an energy storage device for providing operational power even upon loss of all control power sources. The energy storage may be sufficient to ride through expected losses such as a time to start up backup generation. The energy storage may be sufficient to power a trip coil. Thus, electric power system protection is maintained even upon loss of control power. A discharge circuit is provided to allow an operator to de-energize an energy storage device.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, David J. Casebolt, Krishnanjan Gubba Ravikumar, Sean D. Robertson, Austin Edward Wade, Bruce A. Hall