Patents by Inventor Edouard D. de Fresart
Edouard D. de Fresart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10074743Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.Type: GrantFiled: May 25, 2017Date of Patent: September 11, 2018Assignee: NXP USA, Inc.Inventors: Ganming Qin, Edouard D. De Fresart, Pon Sung Ku, Michael F. Petras, Moaniss Zitouni, Dragan Zupac
-
Publication number: 20170288051Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.Type: ApplicationFiled: May 25, 2017Publication date: October 5, 2017Inventors: Ganming Qin, Edouard D. De Fresart, Pon Sung Ku, Michael F. Petras, Moaniss Zitouni, Dragan Zupac
-
Patent number: 9680003Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.Type: GrantFiled: March 27, 2015Date of Patent: June 13, 2017Assignee: NXP USA, Inc.Inventors: Ganming Qin, Edouard D. De Fresart, Pon Sung Ku, Michael F. Petras, Moaniss Zitouni, Dragan Zupac
-
Publication number: 20160284838Abstract: A recess is formed at a semiconductor layer of a device to define a plurality of mesas. An active trench portion of the recess residing between adjacent mesas. A termination portion of the trench residing between the end of each mesa and a perimeter of the recess. The transverse spacing between the mesas and the lateral spacing between the mesas and an outer perimeter of a recess forming the mesas are substantially the same. A shield structure within the trench extends from the region between the mesas to the region between the ends of the mesas and the outer perimeter of the recess forming the mesas. A contact resides between a shield electrode terminal and the shield portion residing in the trench.Type: ApplicationFiled: March 27, 2015Publication date: September 29, 2016Inventors: GANMING QIN, EDOUARD D. DE FRESART, PON SUNG KU, MICHAEL F. PETRAS, MOANISS ZITOUNI, DRAGAN ZUPAC
-
Patent number: 9419128Abstract: A device includes a semiconductor substrate having a surface, a trench in the semiconductor substrate extending vertically from the surface, a body region laterally adjacent the trench, spaced from the surface, having a first conductivity type, and in which a channel is formed during operation, a drift region between the body region and the surface, and having a second conductivity type, a gate structure disposed in the trench alongside the body region, recessed from the surface, and configured to receive a control voltage is applied to control formation of the channel, and a gate dielectric layer disposed along a sidewall of the trench between the gate structure and the body region. The gate structure and the gate dielectric layer have a substantial vertical overlap with the drift region such that electric field magnitudes in the drift region are reduced through application of the control voltage.Type: GrantFiled: October 29, 2015Date of Patent: August 16, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Moaniss Zitouni, Edouard D. de Frésart, Pon Sung Ku, Michael F. Petras, Ganming Qin, Evgueniy N. Stefanov, Dragan Zupac
-
Patent number: 9368576Abstract: Embodiments of semiconductor devices and methods of their formation include providing a semiconductor substrate having a top surface, a bottom surface, an active region, and an edge region, and forming a gate structure in a first trench in the active region of the semiconductor substrate. A termination structure is formed in a second trench in the edge region of the semiconductor substrate. The termination structure has an active region facing side and a device perimeter facing side. The method further includes forming first and second source regions of the first conductivity type are formed in the semiconductor substrate adjacent both sides of the gate structure. A third source region is formed in the semiconductor substrate adjacent the active region facing side of the termination structure. The semiconductor device may be a trench metal oxide semiconductor device, for example.Type: GrantFiled: September 12, 2012Date of Patent: June 14, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Peilin Wang, Jingjing Chen, Edouard D. de Fresart
-
Patent number: 9362394Abstract: Power device termination structures and methods are disclosed herein. The structures include a trenched-gate semiconductor device. The trenched-gate semiconductor device includes a semiconducting material and an array of trenched-gate power transistors. The array defines an inner region including a plurality of inner transistors and an outer region including a plurality of outer transistors. The inner transistors include a plurality of inner trenches that has an average inner region spacing. The outer transistors include a plurality of outer trenches that has an average termination region spacing. The average termination region spacing is greater than the average inner region spacing or is selected such that a breakdown voltage of the plurality of outer transistors is greater than a breakdown voltage of the plurality of inner transistors.Type: GrantFiled: June 18, 2014Date of Patent: June 7, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Moaniss Zitouni, Edouard D. de Frésart, Pon Sung Ku, Ganming Qin
-
Patent number: 9324800Abstract: A bidirectional trench FET device includes a semiconductor substrate, a trench in the substrate extending vertically from the surface of the substrate, and a body region laterally adjacent the trench. A source region is disposed in the semiconductor substrate between the body region and the surface of the substrate. A dielectric layer is disposed over the surface and a body electrode is disposed over the dielectric layer. A body contact plug extends through the dielectric layer to interconnect the body region with the body electrode, and the body contact plug is electrically isolated from the source region. Two separate metal layers are implemented to make multiple body and source contacts electrically isolated from one another throughout the active area of the device. The low resistive path by the body contact plug and the separate metal layers enables suppression of bipolar snapback without losing bidirectional switching capability.Type: GrantFiled: February 11, 2015Date of Patent: April 26, 2016Assignee: Freescale Semiconductor, Inc.Inventors: Pon Sung Ku, Edouard D. De Frèsart, Ganming Qin, Moaniss Zitouni, Dragan Zupac
-
Patent number: 9293535Abstract: A power MOSFET has a main-FET (MFET) and an embedded current sensing-FET (SFET). MFET gate runners are coupled to SFET gate runners by isolation gate runners (IGRs) in a buffer space between the MFET and the SFET. In one embodiment, n IGRs (i=1 to n) couple n+1 gates of a first portion of the MFET (304) to n gates of the SFET. The IGRs have zigzagged central portions where each SFET gate runner is coupled via the IGRs to two MFET gate runners. The zigzagged central portions provide barriers that block parasitic leakage paths, between sources of the SFET and sources of the MFET, for all IGRs except the outboard sides of the first and last IGRs. These may be blocked by increasing the body doping in regions surrounding the remaining leakage paths. The IGRs have substantially no source regions.Type: GrantFiled: September 12, 2012Date of Patent: March 22, 2016Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Peilin Wang, Jingjing Chen, Edouard D. de Fresart, Pon Sung Ku, Wenyi Li, Ganming Qin
-
Publication number: 20160049508Abstract: A device includes a semiconductor substrate having a surface, a trench in the semiconductor substrate extending vertically from the surface, a body region laterally adjacent the trench, spaced from the surface, having a first conductivity type, and in which a channel is formed during operation, a drift region between the body region and the surface, and having a second conductivity type, a gate structure disposed in the trench alongside the body region, recessed from the surface, and configured to receive a control voltage is applied to control formation of the channel, and a gate dielectric layer disposed along a sidewall of the trench between the gate structure and the body region. The gate structure and the gate dielectric layer have a substantial vertical overlap with the drift region such that electric field magnitudes in the drift region are reduced through application of the control voltage.Type: ApplicationFiled: October 29, 2015Publication date: February 18, 2016Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Moaniss Zitouni, Edouard D. de Frésart, Pon Sung Ku, Michael F. Petras, Ganming Qin, Evgueniy N. Stefanov, Dragan Zupac
-
Publication number: 20150372130Abstract: Power device termination structures and methods are disclosed herein. The structures include a trenched-gate semiconductor device. The trenched-gate semiconductor device includes a semiconducting material and an array of trenched-gate power transistors. The array defines an inner region including a plurality of inner transistors and an outer region including a plurality of outer transistors. The inner transistors include a plurality of inner trenches that has an average inner region spacing. The outer transistors include a plurality of outer trenches that has an average termination region spacing. The average termination region spacing is greater than the average inner region spacing or is selected such that a breakdown voltage of the plurality of outer transistors is greater than a breakdown voltage of the plurality of inner transistors.Type: ApplicationFiled: June 18, 2014Publication date: December 24, 2015Applicant: Freescale Semiconductor Inc.Inventors: Moaniss Zitouni, Edouard D. de Frésart, Pon Sung Ku, Ganming Qin
-
Patent number: 9178027Abstract: A device includes a semiconductor substrate having a surface, a trench in the semiconductor substrate extending vertically from the surface, a body region laterally adjacent the trench, spaced from the surface, having a first conductivity type, and in which a channel is formed during operation, a drift region between the body region and the surface, and having a second conductivity type, a gate structure disposed in the trench alongside the body region, recessed from the surface, and configured to receive a control voltage is applied to control formation of the channel, and a gate dielectric layer disposed along a sidewall of the trench between the gate structure and the body region. The gate structure and the gate dielectric layer have a substantial vertical overlap with the drift region such that electric field magnitudes in the drift region are reduced through application of the control voltage.Type: GrantFiled: August 12, 2014Date of Patent: November 3, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Moaniss Zitouni, Edouard D. de Fresart, Pon Sung Ku, Michael F. Petras, Ganming Qin, Evgueniy N. Stefanov, Dragan Zupac
-
Patent number: 9105495Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure (100) includes a trench gate structure (114), a lateral gate structure (118), a body region (124) having a first conductivity type, a drain region (125) and first and second source regions (128, 130) having a second conductivity type. The first and second source regions (128, 130) are formed within the body region (124). The drain region (125) is adjacent to the body region (124) and the first source region (128) is adjacent to the trench gate structure (114), wherein a first portion of the body region (124) disposed between the first source region (128) and the drain region (125) is adjacent to the trench gate structure (114). A second portion of the body region (124) is disposed between the second source region (130) and the drain region (125), and the lateral gate structure (118) is disposed overlying the second portion of the body region (124).Type: GrantFiled: February 12, 2011Date of Patent: August 11, 2015Assignee: FREESCALE SEMICONDUCTOR, INC.Inventors: Peilin Wang, Jingjing Chen, Edouard D. De Fresart
-
Publication number: 20150162328Abstract: Semiconductor device structures and related fabrication methods are provided. An exemplary semiconductor device structure (100) includes a trench gate structure (114), a lateral gate structure (118), a body region (124) having a first conductivity type, a drain region (125) and first and second source regions (128, 130) having a second conductivity type. The first and second source regions (128, 130) are formed within the body region (124). The drain region (125) is adjacent to the body region (124) and the first source region (128) is adjacent to the trench gate structure (114), wherein a first portion of the body region (124) disposed between the first source region (128) and the drain region (125) is adjacent to the trench gate structure (114). A second portion of the body region (124) is disposed between the second source region (130) and the drain region (125), and the lateral gate structure (118) is disposed overlying the second portion of the body region (124).Type: ApplicationFiled: February 12, 2011Publication date: June 11, 2015Inventors: Peilin Wang, Jingjing Chen, Edouard D. De Fresart
-
Patent number: 8932928Abstract: A power MOSFET includes a semiconductor substrate with an upper surface, a cavity of a first depth in the substrate whose sidewall extends to the upper surface, a dielectric liner in the cavity, a gate conductor within the dielectric liner extending to or above the upper surface, body region(s) within the substrate of a second depth, separated from the gate conductor in a lower cavity region by first portion(s) of the dielectric liner of a first thickness, and source region(s) within the body region(s) extending to a third depth that is less than the second depth. The source region(s) are separated from the gate conductor by a second portion of the dielectric liner of a second thickness at least in part greater than the first thickness. The dielectric liner has a protrusion extending laterally into the gate conductor away from the body region(s) at or less than the third depth.Type: GrantFiled: May 12, 2014Date of Patent: January 13, 2015Assignee: Freescale Semiconductor, Inc.Inventors: Peilin Wang, Edouard D. de Fresart, Wenyi Li
-
Patent number: 8895394Abstract: A high voltage vertical field effect transistor device (101) is fabricated in a substrate (102, 104) using angled implantations (116, 120) into trench sidewalls formed above recessed gate poly layers (114) to form self-aligned N+ regions (123) adjacent to the trenches and along an upper region of an elevated substrate. With a trench fill insulator layer (124) formed over the recessed gate poly layers (114), self-aligned P+ body contact regions (128) are implanted into the elevated substrate without counter-doping the self-aligned N+ regions (123), and a subsequent recess etch removes the elevated substrate, leaving self-aligned N+ source regions (135-142) and P+ body contact regions (130-134).Type: GrantFiled: June 20, 2012Date of Patent: November 25, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Ganming Qin, Edouard D. de Frésart, Peilin Wang, Pon S. Ku
-
Publication number: 20140342518Abstract: A power MOSFET includes a semiconductor substrate with an upper surface, a cavity of a first depth in the substrate whose sidewall extends to the upper surface, a dielectric liner in the cavity, a gate conductor within the dielectric liner extending to or above the upper surface, body region(s) within the substrate of a second depth, separated from the gate conductor in a lower cavity region by first portion(s) of the dielectric liner of a first thickness, and source region(s) within the body region(s) extending to a third depth that is less than the second depth. The source region(s) are separated from the gate conductor by a second portion of the dielectric liner of a second thickness at least in part greater than the first thickness. The dielectric liner has a protrusion extending laterally into the gate conductor away from the body region(s) at or less than the third depth.Type: ApplicationFiled: May 12, 2014Publication date: November 20, 2014Applicant: Freescale Semiconductor, Inc.Inventors: Peilin Wang, Edouard D. de Fresart, Wenyi Li
-
Patent number: 8759909Abstract: A power MOSFET includes a semiconductor substrate with an upper surface, a cavity of a first depth in the substrate whose sidewall extends to the upper surface, a dielectric liner in the cavity, a gate conductor within the dielectric liner extending to or above the upper surface, body region(s) within the substrate of a second depth, separated from the gate conductor in a lower cavity region by first portion(s) of the dielectric liner of a first thickness, and source region(s) within the body region(s) extending to a third depth that is less than the second depth. The source region(s) are separated from the gate conductor by a second portion of the dielectric liner of a second thickness at least in part greater than the first thickness. The dielectric liner has a protrusion extending laterally into the gate conductor away from the body region(s) at or less than the third depth.Type: GrantFiled: September 11, 2012Date of Patent: June 24, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Peilin Wang, Edouard D. de Fresart, Wenyi Li
-
Patent number: 8735978Abstract: Embodiments of a semiconductor device include a semiconductor substrate having a first surface and a second surface opposed to the first surface, a trench formed in the semiconductor substrate and extending from the first surface partially through the semiconductor substrate, a gate electrode material deposited in the trench, and a void cavity in the semiconductor substrate between the gate electrode material and the second surface. A portion of the semiconductor substrate is located between the void cavity and the second surface.Type: GrantFiled: February 24, 2011Date of Patent: May 27, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Ljubo Radic, Edouard D. de Frésart
-
Publication number: 20140070313Abstract: A power MOSFET has a main-FET (MFET) and an embedded current sensing-FET (SFET). MFET gate runners are coupled to SFET gate runners by isolation gate runners (IGRs) in a buffer space between the MFET and the SFET. In one embodiment, n IGRs (i=1 to n) couple n+1 gates of a first portion of the MFET (304) to n gates of the SFET. The IGRs have zigzagged central portions where each SFET gate runner is coupled via the IGRs to two MFET gate runners. The zigzagged central portions provide barriers that block parasitic leakage paths, between sources of the SFET and sources of the MFET, for all IGRs except the outboard sides of the first and last IGRs. These may be blocked by increasing the body doping in regions surrounding the remaining leakage paths. The IGRs have substantially no source regions.Type: ApplicationFiled: September 12, 2012Publication date: March 13, 2014Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Peilin Wang, Jingjing Chen, Edouard D. de Fresart, Pon Sung Ku, Wenyi Li, Ganming Qin