Patents by Inventor Eduardo Altschuler
Eduardo Altschuler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9340847Abstract: Embodiments of the present disclosure are directed to methods of manufacturing steel tubes that can be used for mining exploration, and rods made by the same. Embodiments of the methods include a quenching of steel tubes from an austenitic temperature prior to a cold drawing, thereby increasing mechanical properties within the steel tube, such as yield strength, impact toughness, hardness, and abrasion resistance. Embodiments of the methods reduce the manufacturing step of quenching and tempering ends of a steel tube to compensate for wall thinning during threading operations. Embodiments of the methods also tighten dimensional tolerances and reduce residual stresses within steel tubes.Type: GrantFiled: April 10, 2012Date of Patent: May 17, 2016Assignee: Tenaris Connections LimitedInventors: Eduardo Altschuler, Pablo Egger
-
Patent number: 9222156Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.Type: GrantFiled: October 31, 2013Date of Patent: December 29, 2015Assignee: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Patent number: 9188252Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.Type: GrantFiled: March 6, 2013Date of Patent: November 17, 2015Assignee: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Publication number: 20140057121Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.Type: ApplicationFiled: October 31, 2013Publication date: February 27, 2014Applicant: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Patent number: 8636856Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.Type: GrantFiled: February 18, 2011Date of Patent: January 28, 2014Assignee: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Publication number: 20130264123Abstract: Embodiments of the present disclosure are directed to methods of manufacturing steel tubes that can be used for mining exploration, and rods made by the same. Embodiments of the methods include a quenching of steel tubes from an austenitic temperature prior to a cold drawing, thereby increasing mechanical properties within the steel tube, such as yield strength, impact toughness, hardness, and abrasion resistance. Embodiments of the methods reduce the manufacturing step of quenching and tempering ends of a steel tube to compensate for wall thinning during threading operations. Embodiments of the methods also tighten dimensional tolerances and reduce residual stresses within steel tubes.Type: ApplicationFiled: April 10, 2012Publication date: October 10, 2013Applicant: Tenaris Connections LimitedInventors: Eduardo Altschuler, Pablo Egger
-
Patent number: 8414715Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.Type: GrantFiled: February 18, 2011Date of Patent: April 9, 2013Assignee: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Publication number: 20120211132Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, at least about 175 ksi (about 1200 MPa) while maintaining good toughness.Type: ApplicationFiled: February 18, 2011Publication date: August 23, 2012Applicant: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Publication number: 20120211131Abstract: Embodiments of the present disclosure comprise carbon steels and methods of manufacture. In one embodiment, quenching and tempering procedure is performed in which a selected steel composition is formed and heat treated to yield a slightly tempered microstructure having a fine carbide distribution. In another embodiment, a double austenizing procedure is disclosed in which a selected steel composition is formed and subjected to heat treatment to refine the steel microstructure. In one embodiment, the heat treatment may comprise austenizing and quenching the formed steel composition a selected number of times (e.g., 2) prior to tempering. In another embodiment, the heat treatment may comprise subjecting the formed steel composition to austenizing, quenching, and tempering a selected number of times (e.g., 2). Steel products formed from embodiments of the steel composition in this manner (e.g., seamless tubular bars and pipes) will possess high yield strength, e.g.Type: ApplicationFiled: February 18, 2011Publication date: August 23, 2012Applicant: Siderca S.A.I.C.Inventors: Eduardo Altschuler, Teresa Perez, Edgardo Lopez, Constantino Espinosa, Gonzalo Gomez
-
Publication number: 20090101242Abstract: A low carbon alloy steel tube and a method of manufacturing the same, especially for a stored gas inflator pressure vessel, in which the steel tube consists essentially of, by weight: about 0.06% to about 0.18% carbon, about 0.3% to about 1.5% manganese, about 0.05% to about 0.5% silicon, up to about 0.015% sulfur, up to about 0.025% phosphorous, and at least one of the following elements: up to about 0.30% vanadium, upto t about 0.10% aluminum, up to about 0.06% niobium, up to about 1% chromium, up to about 0.70 % nickel, up to about 0.70% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements, and the balance iron and incidental impurities. After a high heating rate of about 100° C. per second; rapidly and fully quenching the steel tubing in a water-based quenching solution at a cooling rate of about 100° C. per second. The steel has a tensile strength of at least about 145 ksi and as high as 220 ksi and exhibits ductile behavior at temperatures as low as ?100° C.Type: ApplicationFiled: December 17, 2008Publication date: April 23, 2009Applicant: TENARIS CONNECTIONS A.G.Inventors: Edgardo Oscar Lopez, Eduardo Altschuler
-
Publication number: 20060169368Abstract: A low carbon alloy steel tube and a method of manufacturing the same, especially for a stored gas inflator pressure vessel, in which the steel tube consists essentially of, by weight: about 0.06% to about 0.18% carbon, about 0.3% to about 1.5% manganese, about 0.05% to about 0.5% silicon, up to about 0.015% sulfur, up to about 0.025% phosphorous, and at least one of the following elements: up to about 0.30% vanadium, upto t about 0.10% aluminum, up to about 0.06% niobium, up to about 1% chromium, up to about 0.70% nickel, up to about 0.70% molybdenum, up to about 0.35% copper, up to about 0.15% residual elements, and the balance iron and incidental impurities. After a high heating rate of about 100° C. per second; rapidly and fully quenching the steel tubing in a water-based quenching solution at a cooling rate of about 100° C. per second. The steel has a tensile strength of at least about 145 ksi and as high as 220 ksi and exhibits ductile behavior at temperatures as low as ?100° C.Type: ApplicationFiled: April 3, 2006Publication date: August 3, 2006Inventors: Edgardo Lopez, Eduardo Altschuler
-
Publication number: 20050076975Abstract: A low carbon alloy steel tube and a method of manufacturing the same, in which the steel tube consists essentially of, by weight: about 0.06% to about 0.18% carbon; about 0.5% to about 1.5% manganese; about 0.1% to about 0.5% silicon; up to about 0.015% sulfur; up to about 0.025% phosphorous; up to about 0.50% nickel; about 0.1% to about 1.0% chromium; about 0.1% to about 1.0% molybdenum; about 0.01% to about 0.10% vanadium; about 0.01% to about 0.10% titanium; about 0.05% to about 0.35% copper; about 0.010% to about 0.050% aluminum; up to about 0.05% niobium; up to about 0.15% residual elements; and the balance iron and incidental impurities. The steel has a tensile strength of at least about 145 ksi and exhibits ductile behavior at temperatures as low as ?60° C.Type: ApplicationFiled: October 5, 2004Publication date: April 14, 2005Applicant: TENARIS CONNECTIONS A.G.Inventors: Edgardo Lopez, Eduardo Altschuler