Patents by Inventor Eduardo Boada

Eduardo Boada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200298235
    Abstract: Methods and devices for concentrating target cells using dielectrophoresis (DEP) are disclosed. The method allows relatively high throughput of sample through a microfluidic device in order to allow rapid capture of target cells even when they are present in low concentrations within the sample. The method utilizes multiple chambers through which samples will flow, the chambers arranged such that the first capture area has a larger area and faster flow rate than a second chamber, the second chamber being positioned downstream of the first capture area and being smaller with a slower flow rate to further concentrate the material captured in the first capture area.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 24, 2020
    Inventors: Jonathan O'HALLORAN, Heather MURTON, Stephen OSBORNE, Eduardo BOADA, Jonathan SALMON
  • Publication number: 20200298232
    Abstract: A microfluidics device has one or more bubble diversion regions. Problems associated with the generation of air bubbles are avoided in a microfluidics device such as a cartridge, for use with a point of care (POC) diagnostics device, the cartridge being able to carry out downstream processing such as polymerase chain reaction (PCR) and/or nucleic acid capture. The bubble diversion region has a lower flow resistance than the flow resistance of an area of interest.
    Type: Application
    Filed: October 15, 2018
    Publication date: September 24, 2020
    Inventors: Hojjat MADADI, Thomas Michael WILLSHARE, Jonathan O'HALLORAN, Philip Thomas SCULLY, Paul MARSHALL, Eduardo BOADA
  • Patent number: 10710075
    Abstract: Methods and devices for concentrating target cells using dielectrophoresis (DEP) are disclosed. The method allows relatively high throughput of sample through a microfluidic device in order to allow rapid capture of target cells even when they are present in low concentrations within the sample. The method utilizes multiple chambers through which samples will flow, the chambers arranged such that the first capture area has a larger area and faster flow rate than a second chamber, the second chamber being positioned downstream of the first capture area and being smaller with a slower flow rate to further concentrate the material captured in the first capture area.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: July 14, 2020
    Assignee: QUANTUMDX GROUP LIMITED
    Inventors: Jonathan O'Halloran, Heather Murton, Stephen Osborne, Eduardo Boada, Jonathan Salmon
  • Publication number: 20190176151
    Abstract: Methods and devices for concentrating target cells using dielectrophoresis (DEP) are disclosed. The method allows relatively high throughput of sample through a microfluidic device in order to allow rapid capture of target cells even when they are present in low concentrations within the sample. The method utilizes multiple chambers through which samples will flow, the chambers arranged such that the first capture area has a larger area and faster flow rate than a second chamber, the second chamber being positioned downstream of the first capture area and being smaller with a slower flow rate to further concentrate the material captured in the first capture area.
    Type: Application
    Filed: June 20, 2017
    Publication date: June 13, 2019
    Applicant: QUANTUMDX GROUP LIMITED
    Inventors: Jonathan O'HALLORAN, Heather MURTON, Stephen OSBORNE, Eduardo BOADA, Jonathan SALMON
  • Patent number: 8291780
    Abstract: An inspection sensor module for an in-line pipe inspection tool has a support for mounting the module on the tool, a finger pivotally attached at one end to the support and pivotally attached at the other end to a sensor block carrying one or more inspection sensors. A first leaf spring extends from the support to the finger to bias the finger outwardly, and a second leaf spring extends from the support to the carrier to bias the sensor block. Biasing sensors are mounted on the leading and trailing edges of the first leaf spring to detect movement of the first leaf spring corresponding to movement of the inspection sensors towards or away from the support.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 23, 2012
    Assignee: PII Limited
    Inventors: Derek R. Smith, Eduardo Boada, Gary Brayson
  • Publication number: 20080011063
    Abstract: An inspection sensor module for an in-line pipe inspection tool has a support for mounting the module on the tool, a finger pivotally attached at one end to the support and pivotally attached at the other end to a sensor block carrying one or more inspection sensors. A first leaf spring extends from the support to the finger to bias the finger outwardly, and a second leaf spring extends from the support to the carrier to bias the sensor block. Biasing sensors are mounted on the leading and trailing edges of the first leaf spring to detect movement of the first leaf spring corresponding to movement of the inspection sensors towards or away from the support.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 17, 2008
    Inventors: Derek Smith, Eduardo Boada, Gary Brayson