Patents by Inventor Eduardo Davila

Eduardo Davila has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210330769
    Abstract: The present invention provides a universal, yet adaptable, anti-tag chimeric antigen receptor (AT-CAR) system which provides T cells with the ability and specificity to recognize and kill target cells, such as tumor cells, that have been marked by tagged antibodies. As an example, ?FITC-CAR-expressing T cells have been developed that specifically recognize various human cancer cells when those cells are bound by cancer-reactive FITC-labeled antibodies. The activation of ?FITC-CAR-expressing T cells is shown to induce efficient target lysis, T cell proliferation, and cytokine/chemokine production. The system can be used to treating subjects having cancer.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 28, 2021
    Applicant: University of Maryland, Baltimore
    Inventors: Eduardo DAVILA, Koji TAMADA
  • Patent number: 10973893
    Abstract: The present invention provides a universal, yet adaptable, anti-tag chimeric antigen receptor (AT-CAR) system which provides T cells with the ability and specificity to recognize and kill target cells, such as tumor cells, that have been marked by tagged antibodies. As an example, ?FITC-CAR-expressing T cells have been developed that specifically recognize various human cancer cells when those cells are bound by cancer-reactive FITC-labeled antibodies. The activation of ?FITC-CAR-expressing T cells is shown to induce efficient target lysis, T cell proliferation, and cytokine/chemokine production. The system can be used to treating subjects having cancer.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: April 13, 2021
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Eduardo Davila, Koji Tamada
  • Patent number: 10975137
    Abstract: Novel costimulatory fusion proteins and DNA sequences that enhance T cell responses to weakly immunogenic and/or lowly expressed antigens and that confer T cell resistance against MDSC-mediated suppression are disclosed. The fusion proteins comprise portions of CD4, CD8? or the T cell receptor linked to a specific region of MyD88 or other signaling molecules. These fusion proteins and sequence variants thereof improve T cell activation and responsiveness. Also disclosed is the use of these molecules in host cells as a means to enhance and costimulate responses of immune cells including cytotoxic CD8+ T cells and the use of these cells to treat cancer, infectious agents and other diseases.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: April 13, 2021
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventor: Eduardo Davila
  • Publication number: 20180282391
    Abstract: Novel costimulatory fusion proteins and DNA sequences that enhance T cell responses to weakly immunogenic and/or lowly expressed antigens and that confer T cell resistance against MDSC-mediated suppression are disclosed. The fusion proteins comprise portions of CD4, CD8? or the T cell receptor linked to a specific region of MyD88 or other signaling molecules. These fusion proteins and sequence variants thereof improve T cell activation and responsiveness. Also disclosed is the use of these molecules in host cells as a means to enhance and costimulate responses of immune cells including cytotoxic CD8+ T cells and the use of these cells to treat cancer, infectious agents and other diseases.
    Type: Application
    Filed: November 6, 2015
    Publication date: October 4, 2018
    Applicant: University of Maryland, Baltimore
    Inventor: Eduardo DAVILA
  • Patent number: 9464326
    Abstract: Toll-like receptors (TLR) are expressed by a variety of cancers, including melanoma and T-ALL. TLR signaling plays an important role in T cell malignancies and melanoma. The effects of stimulating or inhibiting the TLR/IL-1 receptor-associated kinases IRAK-1 and IRAK-4 in melanoma and T-ALL cells were evaluated. Pharmacological treatment with an IRAK-1,-4 inhibitor delays tumor growth and prolongs survival in vitro and in vivo, indicating that TLR signaling contributes to T-ALL and melanoma progression and interfering with this signaling is a novel therapeutic strategy to control T-ALL and melanoma proliferation.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 11, 2016
    Assignee: University of Maryland, Baltimore
    Inventor: Eduardo Davila
  • Publication number: 20160129109
    Abstract: The present invention provides a universal, yet adaptable, anti-tag chimeric antigen receptor (AT-CAR) system which provides T cells with the ability and specificity to recognize and kill target cells, such as tumor cells, that have been marked by tagged antibodies. As an example, ?FITC-CAR-expressing T cells have been developed that specifically recognize various human cancer cells when those cells are bound by cancer-reactive FITC-labeled antibodies. The activation of ?FITC-CAR-expressing T cells is shown to induce efficient target lysis, T cell proliferation, and cytokine/chemokine production. The system can be used to treating subjects having cancer.
    Type: Application
    Filed: January 7, 2016
    Publication date: May 12, 2016
    Applicant: University of Maryland, Baltimore
    Inventors: Eduardo Davila, Koji Tamada
  • Patent number: 9233125
    Abstract: The present invention provides a universal, yet adaptable, anti-tag chimeric antigen receptor (AT-CAR) system which provides T cells with the ability and specificity to recognize and kill target cells, such as tumor cells, that have been marked by tagged antibodies. As an example, ?FITC-CAR-expressing T cells have been developed that specifically recognize various human cancer cells when those cells are bound by cancer-reactive FITC-labeled antibodies. The activation of ?FITC-CAR-expressing T cells is shown to induce efficient target lysis, T cell proliferation, and cytokine/chemokine production. The system can be used to treating subjects having cancer.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: January 12, 2016
    Assignee: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Eduardo Davila, Koji Tamada
  • Publication number: 20130287752
    Abstract: The present invention provides a universal, yet adaptable, anti-tag chimeric antigen receptor (AT-CAR) system which provides T cells with the ability and specificity to recognize and kill target cells, such as tumor cells, that have been marked by tagged antibodies. As an example, ?FITC-CAR-expressing T cells have been developed that specifically recognize various human cancer cells when those cells are bound by cancer-reactive FITC-labeled antibodies. The activation of ?FITC-CAR-expressing T cells is shown to induce efficient target lysis, T cell proliferation, and cytokine/chemokine production. The system can be used to treating subjects having cancer.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 31, 2013
    Applicant: UNIVERSITY OF MARYLAND, BALTIMORE
    Inventors: Eduardo Davila, Koji Tamada
  • Publication number: 20130280264
    Abstract: Toll-like receptors (TLR) are expressed by a variety of cancers, including melanoma and T-ALL. TLR signaling plays an important role in T cell malignancies and melanoma. The effects of stimulating or inhibiting the TLR/IL-1 receptor-associated kinases IRAK-1 and IRAK-4 in melanoma and T-ALL cells were evaluated. Pharmacological treatment with an IRAK-1,-4 inhibitor delays tumor growth and prolongs survival in vitro and in vivo, indicating that TLR signaling contributes to T-ALL and melanoma progression and interfering with this signaling is a novel therapeutic strategy to control T-ALL and melanoma proliferation.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 24, 2013
    Inventor: Eduardo Davila