Patents by Inventor Eduardo Margallo Balbás

Eduardo Margallo Balbás has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11815599
    Abstract: A LIDAR system which reduces or suppress the frequency shift induced by the movement of objects in a scene relative to the LIDAR, and which comprises a light source, an input aperture (101), a splitter (2) configured to split a reflected light into a reference channel (4) and a first imaging channel (3), a first imaging optical IQ receiver (5) configured to obtain a first interference signal, a reference optical IQ receiver (6) configured to obtain a reference interference signal, an imaging oscillator (111), configured to be temporarily coherent with the reflected light, at least a mixer (12), connected to the first imaging optical IQ (5) and to the reference optical IQ (6) and configured to obtain a first intermodulation product with a higher frequency and an intermodulation product of interest with its Doppler Shift scaled.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: November 14, 2023
    Assignee: MOURO LABS, S.L.
    Inventor: Eduardo Margallo Balbás
  • Publication number: 20230288638
    Abstract: Multi-directional optical devices are disclosed. The optical device may employ a multiple input/multiple output optical coupling structure to determine propagation direction of received light (in receiver configuration), and/or control the propagation direction of transmitted light (in transmitter configuration). Propagation direction can be determined without the need for moving parts. In accordance with some embodiments, designs of solid-state photonic integrated circuits (PICs) are disclosed herein that utilize N×M star couplers to perform Fourier transformations to light traversing between the N ports and M ports such that light arriving at one or more of the N ports is distributed with a linear phase profile across the M ports. The slope of the linear phase profile is dependent on which of the N ports that light was received from. The light exits from waveguides coupled to the M ports at one or more propagation directions dependent on the linear phase profile.
    Type: Application
    Filed: July 19, 2021
    Publication date: September 14, 2023
    Applicant: Ommatidia LIDAR S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau
  • Publication number: 20230146113
    Abstract: A LIDAR system which reduces or suppress the frequency shift induced by the movement of objects in a scene relative to the LIDAR, and which comprises a light source, an input aperture (101), a splitter (2) configured to split a reflected light into a reference channel (4) and a first imaging channel (3), a first imaging optical IQ receiver (5) configured to obtain a first interference signal, a reference optical IQ receiver (6) configured to obtain a reference interference signal, an imaging oscillator (111), configured to be temporarily coherent with the reflected light, at least a mixer (12), connected to the first imaging optical IQ (5) and to the reference optical IQ (6) and configured to obtain a first intermodulation product with a higher frequency and an intermodulation product of interest with its Doppler Shift scaled.
    Type: Application
    Filed: April 21, 2021
    Publication date: May 11, 2023
    Applicant: MOURO LABS S.L.
    Inventor: Eduardo Margallo Balbás
  • Patent number: 11517199
    Abstract: Embodiments for crossing an occlusion by controlling a guide with the aid of optical coherence tomography (OCT) data are described. Embodiments include transmitting one or more beams of radiation via one or more waveguides on a flexible substrate within a guide wire. One or more beams of scattered or reflected radiation may be received from a sample via one or more waveguides. Depth-resolved optical data of the sample may be generated based on the received beams of scattered or reflected radiation. The depth-resolved data may be used for determining at least one of a distance between the guide wire and a wall of the artery and a distance between the guide wire and an occlusion within the artery. A position of the guide wire within the artery may then be controlled based on the determined distance or distances.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: December 6, 2022
    Assignee: Medlumics S.L.
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Patent number: 11402579
    Abstract: A fabrication method includes arranging a plurality of dice on a substrate and performing a first etching process that etches a first layer of the substrate at a boundary between adjacent dice on the substrate. The etching forms facets of one or more waveguides that are defined within the first layer, and the etching leaves a portion of the first layer in the boundary between the adjacent dice. The method continues with a second etching process that etches the portion of the first layer and a second layer beneath the portion of the first layer, the second etching process forming a trench in the boundary where the second layer has a different material than the first layer. The method also includes separating the dice from one another along the trench.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: August 2, 2022
    Assignee: Medlumics S.L.
    Inventors: José Luis Rubio Guivernau, Eduardo Margallo Balbás
  • Patent number: 11378661
    Abstract: The method comprises fabricating a plurality of sub-units on a planar substrate, where each sub-unit comprises an optical sensing structure configured to receive at least a portion of an optical wavefront that impinges on one or more of the sub-units, and material forming at least a portion of a hinge in a vicinity of a border with at least one adjacent sub-unit; removing at least a portion of the substrate on respective borders between each of at least three different pairs of sub-units to enable relative movement between the sub-units in each pair constrained by one of the hinges formed from the material; and providing one or more actuators configured to apply a force to fold a connected network of multiple sub-units into a non-planar formation.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: July 5, 2022
    Assignee: MOURO LABS, S.L.
    Inventor: Eduardo Margallo Balbás
  • Publication number: 20220146636
    Abstract: The method comprises fabricating a plurality of sub-units on a planar substrate, where each sub-unit comprises an optical sensing structure configured to receive at least a portion of an optical wavefront that impinges on one or more of the sub-units, and material forming at least a portion of a hinge in a vicinity of a border with at least one adjacent sub-unit; removing at least a portion of the substrate on respective borders between each of at least three different pairs of sub-units to enable relative movement between the sub-units in each pair constrained by one of the hinges formed from the material; and providing one or more actuators configured to apply a force to fold a connected network of multiple sub-units into a non-planar formation.
    Type: Application
    Filed: April 23, 2020
    Publication date: May 12, 2022
    Applicant: Mouro Labs, S.L.
    Inventor: Eduardo Margallo Balbás
  • Patent number: 11016195
    Abstract: An aperture array comprises apertures arranged over one or more dimensions. Each aperture is configured to receive a respective portion of a received optical wavefront. Each aperture is coupled to a respective optical mixer that coherently interferes the respective portion of the received optical wavefront with a respective local oscillator optical wave. A processing module is configured to process electrical signals detected from outputs of the optical mixers, including: for each optical mixer, determining at least one phase/amplitude information from at least one electrical signal detected from at least one output of that optical mixer, determining direction-based information, associated with a subset of the field of view, based on phase/amplitude information derived from at least two optical mixers of the plurality of optical mixers, and determining distance information from the direction-based information.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: May 25, 2021
    Assignee: MOURO LABS, S.L.
    Inventor: Eduardo Margallo Balbás
  • Publication number: 20210077181
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes one or more electrodes configured to apply RF energy to a portion of a sample in contact with the electrode. The distal section also includes a plurality of optical elements configured to transmit one or more beams of exposure radiation away from the distal section of the catheter. The proximal section includes an optical source configured to generate a source beam of radiation and a detector configured to generate depth-resolved optical data. The multiplexer is configured to generate the one or more beams of exposure radiation from the source beam of radiation.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 18, 2021
    Applicant: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler
  • Publication number: 20210072384
    Abstract: An aperture array comprises apertures arranged over one or more dimensions. Each aperture is configured to receive a respective portion of a received optical wavefront. Each aperture is coupled to a respective optical mixer that coherently interferes the respective portion of the received optical wavefront with a respective local oscillator optical wave. A processing module is configured to process electrical signals detected from outputs of the optical mixers, including: for each optical mixer, determining at least one phase/amplitude information from at least one electrical signal detected from at least one output of that optical mixer, determining direction-based information, associated with a subset of the field of view, based on phase/amplitude information derived from at least two optical mixers of the plurality of optical mixers, and determining distance information from the direction-based information.
    Type: Application
    Filed: April 23, 2020
    Publication date: March 11, 2021
    Applicant: Mouro Labs, S.L.
    Inventor: Eduardo Margallo Balbás
  • Patent number: 10835313
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes one or more electrodes configured to apply RF energy to a portion of a sample in contact with the electrode. The distal section also includes a plurality of optical elements configured to transmit one or more beams of exposure radiation away from the distal section of the catheter. The proximal section includes an optical source configured to generate a source beam of radiation and a detector configured to generate depth-resolved optical data. The multiplexer is configured to generate the one or more beams of exposure radiation from the source beam of radiation.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: November 17, 2020
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler
  • Publication number: 20190192220
    Abstract: Described herein are devices and methods for performing ablation using ablation catheters with one or more patterned and textured active areas. An ablation catheter includes a proximal section, a distal section, and a sheath coupled between the distal section and the proximal section. The distal section includes an active area with a patterned, textured surface that is configured to apply radiofrequency (RF) energy, cryogenic cooling, or laser energy output to a portion of target tissue, such that the portion of target tissue is ablated. The patterned, textured surface of the active area is configured to maintain contact between the target tissue and the active area.
    Type: Application
    Filed: December 5, 2018
    Publication date: June 27, 2019
    Inventor: Eduardo MARGALLO BALBÁS
  • Publication number: 20190196102
    Abstract: A fabrication method includes arranging a plurality of dice on a substrate and performing a first etching process that etches a first layer of the substrate at a boundary between adjacent dice on the substrate. The etching forms facets of one or more waveguides that are defined within the first layer, and the etching leaves a portion of the first layer in the boundary between the adjacent dice. The method continues with a second etching process that etches the portion of the first layer and a second layer beneath the portion of the first layer, the second etching process forming a trench in the boundary where the second layer has a different material than the first layer. The method also includes separating the dice from one another along the trench.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 27, 2019
    Applicant: Medlumics S.L.
    Inventors: José Luis RUBIO GUIVERNAU, Eduardo MARGALLO BALBÁS
  • Publication number: 20190175023
    Abstract: Embodiments for crossing an occlusion by controlling a guide with the aid of optical coherence tomography (OCT) data are described. Embodiments include transmitting one or more beams of radiation via one or more waveguides on a flexible substrate within a guide wire. One or more beams of scattered or reflected radiation may be received from a sample via one or more waveguides. Depth-resolved optical data of the sample may be generated based on the received beams of scattered or reflected radiation. The depth-resolved data may be used for determining at least one of a distance between the guide wire and a wall of the artery and a distance between the guide wire and an occlusion within the artery. A position of the guide wire within the artery may then be controlled based on the determined distance or distances.
    Type: Application
    Filed: February 15, 2019
    Publication date: June 13, 2019
    Applicant: Medlumics S.L.
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Patent number: 10206584
    Abstract: Systems and methods for controlling a guide with the aid of optical coherence tomography (OCT) data are described. A guide wire includes at least one optical fiber, a flexible substrate, and one or more optical elements. The at least one optical fiber transmits a source beam of radiation. The flexible substrate includes a plurality of waveguides. At least one of the plurality of waveguides transmits one or more beams of radiation away from the guide wire, and at least one of the plurality of waveguides receives one or more beams of scattered radiation that have been reflected or scattered from a sample. The multiplexer generates the one or more beams of exposure radiation from the source beam of radiation. The one or more optical elements at least one of focus and steer the one or more beams of radiation.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: February 19, 2019
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, Alejandro Barriga Rivera, José Luis Rubio Guivernau, Santiago Jiménez Valero, Juan Lloret Soler
  • Patent number: 10194981
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes several interconnected optical ports configured to transmit exposure radiation toward a sample and receive radiation that have been reflected or scattered from the sample. The interconnected optical ports are formed on a substrate having rigid sections and flexible sections arranged around the distal section. A holder maintains the interconnected optical elements in a fixed spatial relationship.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 5, 2019
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler, Juan Sancho Durá
  • Patent number: 10113858
    Abstract: A Time Domain Optical Coherence Tomography system using a modulation scheme multiplexes the scanning range of the delay line into different spectral bands. Such a modulation scheme may allow for power consumption reduction compared with a single delay line element since the same modulation pattern is being used for several channels. In an example, the optical coherence tomography system may include a plurality of stages, each stage having a group delay element. The distinct group delays may be introduced to scan a sample with distinct electrical frequency bands at distinct axial scanning depth ranges.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: October 30, 2018
    Assignee: Medlumics S.L.
    Inventors: Juan Sancho Durá, Alberto Martin, José Luis Rubio Guivernau, Eduardo Margallo Balbás
  • Patent number: 10111706
    Abstract: Systems and methods for performing RF ablation while monitoring the procedure using low coherence interferometry (LCI) data are described. A catheter includes a distal section, a proximal section, a multiplexer, and a sheath coupled between the distal section and the proximal section. The distal section includes several interconnected optical ports configured to transmit exposure radiation toward a sample and receive radiation that have been reflected or scattered from the sample. The interconnected optical ports are formed on a substrate having rigid sections and flexible sections arranged around the distal section. A holder maintains the interconnected optical elements in a fixed spatial relationship.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: October 30, 2018
    Assignee: MEDLUMICS S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau, Santiago Jiménez Valero, Alejandro Barriga Rivera, Justo Contreras Bermejo, Juan Lloret Soler, Juan Sancho Durá
  • Patent number: 9976844
    Abstract: A chip package includes a housing, one or more electrical connections coupled to an exterior of the housing, a photonic integrated circuit, and a scanning unit. Both the photonic integrated circuit and the scanning unit are disposed within the housing. The photonic integrated circuit has at least one waveguide designed to guide a beam of light. The scanning unit is designed to laterally scan the beam of light across a focal plane outside of the housing. The scanning unit is aligned with the photonic integrated circuit such that the beam of light is coupled between the photonic integrated circuit and the scanning unit.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: May 22, 2018
    Assignee: Medlumics S.L.
    Inventors: Juan Lloret Soler, Juan Sancho Durá, José Luis Rubio Guivernau, Eduardo Margallo Balbás, William Kennedy Landles, Andrés Cifuentes, Blair Ungar, Kirill Zinoviev
  • Patent number: 9869541
    Abstract: A system for optical coherence tomography using multiple interferometers presented. The interferometry system includes a source configured to generate a variable wavelength light beam. A first splitter is configured to split the variable wavelength light beam to at least a first light beam and a second light beam. A first delay element is configured to delay the first light beam by a first time delay. A second delay element is configured to delay the second light beam by a second time delay, such that the delayed first light beam and the delayed second light beam are out of coherence with each other. A first interferometer is configured to receive the delayed first light beam as an input. A second interferometer is configured to receive the delayed second light beam as an input.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: January 16, 2018
    Assignee: Medlumics S.L.
    Inventors: Eduardo Margallo Balbás, José Luis Rubio Guivernau