Patents by Inventor Eduardo Mateo RODRIGUEZ

Eduardo Mateo RODRIGUEZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11933605
    Abstract: Aspects of the present disclosure describe estimating/measuring core-cladding concentricity error in optical fibers. In sharp contrast to the prior art, our inventive method is based on measuring a seemingly unrelated property of fibers called guided acoustic wave Brillouin scattering (GAWBS). As we shall show and describe, by analyzing this GAWBS property we advantageously determine what level of CCCE is exhibited by the optical fiber.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: March 19, 2024
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Hussam Batshon, Shinsuke Fujisawa, Kohei Nakamura, Takanori Inoue, Eduardo Mateo Rodriguez, Yoshihisa Inada
  • Patent number: 11782217
    Abstract: Aspects of the present disclosure describe methods for reducing guided acoustic wave Brillouin (GAWBS) noise in an optical fiber that may be included in an optical communications system by reducing the polarization diffusion length of the fiber by increasing the birefringence of the optical fiber, the increased birefringence of the optical fiber being increased with respect to its average magnitude. Additionally, the polarization diffusion length is reduced by reducing the coherence length of birefringence of the optical fiber.
    Type: Grant
    Filed: March 1, 2022
    Date of Patent: October 10, 2023
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Eduardo Mateo Rodriguez, Hassam Batshon, Shinsuke Fujisawa, Kohei Nakamura, Takanori Inoue, Yoshihisa Inada
  • Patent number: 11705971
    Abstract: An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: July 18, 2023
    Assignee: NEC CORPORATION
    Inventors: Ryuji Aida, Eduardo Mateo Rodriguez
  • Patent number: 11658750
    Abstract: An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
    Type: Grant
    Filed: August 15, 2018
    Date of Patent: May 23, 2023
    Assignee: NEC CORPORATION
    Inventors: Ryuji Aida, Eduardo Mateo Rodriguez
  • Publication number: 20220381932
    Abstract: Earthquake detection via fiber sensing is provided using using a supervisory path of submarine cables wherein the supervisory system/path of a submarine optical cable conveys portion(s) of an optical signal back to an origin location periodically—i.e., at every repeater location. Advantageously, since it is known where a returning signal is coming from, a resolution equivalent to an undersea span length may be determined—which is sufficient for wide area disturbances such as earthquakes. The returned signal is sufficiently strong such that the signal-to-noise ratio of a returned/received signal is not limited by the ASE noise of the amplifiers. The returned signal is much larger as compared to a normal distributed acoustic sensing (DAS) return signal since the return signal according to aspects of the present disclosure is directed backward via an optical coupler/reflector/circulator having a much larger coupling ratio as compared to normal Rayleigh back scattering utilized in DAS.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 1, 2022
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Yue-Kai HUANG, Ezra IP, Hussam BATSHON, Eduardo Mateo RODRIGUEZ, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA
  • Patent number: 11467061
    Abstract: Aspects of the present disclosure describe a method for estimating mode field distribution in optical fibers from guided acoustic-wave Brillouin scattering wherein light for which the optical mode-field distribution is determined remains in the optical fibers and the distribution is made for light inside the fiber, and not at a fiber/air interface or other perturbation points to the fiber resulting in a more accurate representation of the optical mode-field distribution in the fiber. Since light is always in the fiber during the determination, no complicated fiber preparation steps or procedures are required and the mode-field distribution is determined as an average distribution along the length of the fiber under test.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: October 11, 2022
    Inventors: Fatih Yaman, Eduardo Mateo Rodriguez, Shinsuke Fujisawa, Hussam Batshon, Kohei Nakamura, Takanori Inoue, Yoshihisa Inada, Takaaki Ogata
  • Publication number: 20220308290
    Abstract: Aspects of the present disclosure describe methods for reducing guided acoustic wave Brillouin (GAWBS) noise in an optical fiber that may be included in an optical communications system by reducing the polarization diffusion length of the fiber by increasing the birefringence of the optical fiber, the increased birefringence of the optical fiber being increased with respect to its average magnitude. Additionally, the polarization diffusion length is reduced by reducing the coherence length of birefringence of the optical fiber.
    Type: Application
    Filed: March 1, 2022
    Publication date: September 29, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Hassam BATSHON, Shinsuke FUJISAWA, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA
  • Publication number: 20220278748
    Abstract: Aspects of the present disclosure are directed to systems, methods, and structures providing for the accurate measurement of guided acoustic-wave Brillouin scattering in optical fiber transmission systems and facilities.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 1, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Shinsuke FUJISAWA, Hussam BATSHON, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA, Takaaki OGATA
  • Publication number: 20220228859
    Abstract: Aspects of the present disclosure describe estimating/measuring core-cladding concentricity error in optical fibers. In sharp contrast to the prior art, our inventive method is based on measuring a seemingly unrelated property of fibers called guided acoustic wave Brillouin scattering (GAWBS). As we shall show and describe, by analyzing this GAWBS property we advantageously determine what level of CCCE is exhibited by the optical fiber.
    Type: Application
    Filed: January 17, 2022
    Publication date: July 21, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Hussam BATSHON, Shinsuke FUJISAWA, Kohei NAKAMURA, Takanori INOUE, Eduardo Mateo RODRIGUEZ, Yoshihisa INADA
  • Publication number: 20220173808
    Abstract: Aspects of the present disclosure describe systems, methods. and structures in which guided acoustic Brillouin (GAWBS) noise is measured using a homodyne measurement technique and demonstrated using a number of optical fibers, such fibers being commonly used in contemporary optical communications systems. The measurements are made with single spans and determined to be consistent with separate multi-span long-distance measurements. Additionally, a technique for preparing an optical fiber exhibiting superior GAWBS noise characteristics by reducing coherence length of the optical fiber by spinning the fiber at a high rate during the drawing process such that birefringence coherence length is reduced.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 2, 2022
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Kohei NAKAMURA, Takanori INOUE, Eduardo Mateo RODRIGUEZ, Shinsuke FUJISAWA, Hussam BATSHON, Yoshihisa INADA, Takaaki OGATA
  • Publication number: 20220011195
    Abstract: Aspects of the present disclosure describe a method for estimating mode field distribution in optical fibers from guided acoustic-wave Brillouin scattering wherein light for which the optical mode-field distribution is determined remains in the optical fibers and the distribution is made for light inside the fiber, and not at a fiber/air interface or other perturbation points to the fiber resulting in a more accurate representation of the optical mode-field distribution in the fiber. Since light is always in the fiber during the determination, no complicated fiber preparation steps or procedures are required and the mode-field distribution is determined as an average distribution along the length of the fiber under test.
    Type: Application
    Filed: June 7, 2021
    Publication date: January 13, 2022
    Applicants: NEC LABORATORIES AMERICA, INC, NEC Corporation
    Inventors: Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Shinsuke FUJISAWA, Hussam BATSHON, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA, Takaaki OGATA
  • Publication number: 20210256347
    Abstract: Aspects of the present disclosure describe optical transmission systems exhibiting low complexity fiber nonlinearity compensation provided by neural networks using lookup tables for multiplication operations.
    Type: Application
    Filed: January 12, 2021
    Publication date: August 19, 2021
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Shinsuke FUJISAWA, Fatih YAMAN, Eduardo Mateo RODRIGUEZ, Yoshihisa INADA, Kohei NAKAMURA, Takanori INOUE
  • Publication number: 20210194597
    Abstract: An optical transmission apparatus outputs a main signal. An optical transmission apparatus superimposes a monitoring signal on an optical signal and outputs it. A submarine branching apparatus includes a return unit configured to return the monitoring signal received from the optical transmission apparatus and is configured to switch an output destination of the main signal received from the optical transmission apparatus to an optical transmission apparatus or the optical transmission apparatus. The optical transmission apparatus is configured to detect the monitoring signal returned from the return unit and notifies the optical transmission apparatus of a result of the detection. The optical transmission apparatus instructs the submarine branching apparatus to switch the output destination of the main signal in accordance with the notification.
    Type: Application
    Filed: August 15, 2018
    Publication date: June 24, 2021
    Applicant: NEC Corporation
    Inventors: Ryuji AIDA, Eduardo MATEO RODRIGUEZ
  • Patent number: 11043786
    Abstract: Aspects of the present disclosure describe systems, methods, and structures that advantageously amplify optical signals through the effect of optical pump signals generated by a multicore laser diode and multicore rare-earth doped optical fiber in optical communication with a 3D waveguide structure and a multicore input signal fiber providing a plurality of optical signals for amplification.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: June 22, 2021
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriguez, Kohei Nakamura, Yoshihisa Inada, Takanori Inoue
  • Publication number: 20210044075
    Abstract: The object is to provide an optical repeater, a manufacturing method of an optical repeater, and a relay method of an optical signal that can achieve a redundant configuration for a failure of a light source outputting an excitation light with a simple configuration. Light sources output lights. The optical amplification units amplify optical signals using excitation lights. An optical distribution unit branches the lights output from the light sources into two branched lights and distributes the branched lights in such a manner that each of the optical amplification units receives the branched light branched from the lights from two different light sources as the excitation light.
    Type: Application
    Filed: December 17, 2018
    Publication date: February 11, 2021
    Applicant: NEC Corporation
    Inventors: Satoshi MIKAMI, Eduardo MATEO RODRIGUEZ
  • Publication number: 20200403383
    Abstract: Aspects of the present disclosure describe systems, methods and structures for providing semiconductor amplifiers exhibiting a low polarization-dependent gain.
    Type: Application
    Filed: June 17, 2020
    Publication date: December 24, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Fatih YAMAN, Shinsuke FUJISAWA, Eduardo Mateo RODRIGUEZ, Kohei NAKAMURA, Takanori INOUE, Yoshihisa INADA, Takaaki OGATA
  • Patent number: 10855392
    Abstract: Aspects of the present disclosure describe systems, methods and structures including high-density submarine/undersea reconfigurable optical add/drop multiplexers (ROADM) having remote wavelength selective switch (WSS) redundancy.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: December 1, 2020
    Inventors: Eduardo Mateo Rodriguez, Ryuji Aida, Takehiro Nakano
  • Patent number: 10708094
    Abstract: Systems and methods for transmission filtering are provided. A receiver includes an input coupled to a transmission line to receive distorted optical symbols. A distortion filter is coupled to the input to replace the distorted optical symbols with predicted symbols using a trained neural network. A decoder is coupled to the distortion filter to decode the predicted symbols.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: July 7, 2020
    Assignee: NEC Corporation
    Inventors: Fatih Yaman, Shaoliang Zhang, Eduardo Mateo Rodriguez, Yoshihisa Inada, Yue-Kai Huang, Weiyang Mo
  • Publication number: 20200153532
    Abstract: Aspects of the present disclosure describe systems, methods and structures including high-density submarine/undersea reconfigurable optical add/drop multiplexers (ROADM) having remote wavelength selective switch (WSS) redundancy.
    Type: Application
    Filed: November 12, 2019
    Publication date: May 14, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Eduardo Mateo RODRIGUEZ, RYUJI AIDA, Takehiro NAKANO
  • Publication number: 20200153531
    Abstract: Aspects of the present disclosure describe systems, methods and structures including high-density submarine/undersea reconfigurable optical add/drop multiplexers (ROADM) having remote wavelength selective switch (WSS) redundancy.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 14, 2020
    Applicant: NEC LABORATORIES AMERICA, INC
    Inventors: Eduardo Mateo RODRIGUEZ, RYUJI AIDA, Takehiro NAKANO