Patents by Inventor Edward A. Botchwey, III

Edward A. Botchwey, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9874566
    Abstract: To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye-polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 parts per million. Spatial and temporal ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: January 23, 2018
    Assignee: University of Virginia Patent Foundation
    Inventors: Kenneth Brayman, Daniel Bowers, Cassandra L. Fraser, Edward A. Botchwey, III
  • Patent number: 9682078
    Abstract: The present application discloses strategies to recruit and mobilize stem cells using S1P receptor selective agonists and antagonists as wells as regulators of chemokine receptors. In an in vivo ischemic model, S1P1/S1P3 activation with FTY720 impeded inflammatory cell infiltration and recruited endothelial progenitor cells (EPCs) with the potential to increase microvascular remodeling. S1P3 expression on marrow-derived cells was essential for this remodeling. Concurrent systemic S1P3 and CXCR4 antagonism mobilized hematopoietic stem cells (HSCs) with the ability to engraft and repopulate blood cells. Pre-treatment of donor HSCs with FTY720 increased homing toward SDF-1 and improved engraftment in marrow. FTY720-coated bone allografts coupled with systemic administration of VPC01091 enhanced bone allograft integration and new bone formation in bone defects. MSCs pre-treated with FTY720 exhibited increased migration toward SDF-1, a CXCR4+ ligand.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: June 20, 2017
    Assignee: University of Virginia Patent Foundation
    Inventors: Edward A. Botchwey, III, Mary J. Laughlin, Kevin R. Lynch, Anusuya Das, Anthony Awojoodu
  • Publication number: 20160041177
    Abstract: To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye-polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 parts per million. Spatial and temporal ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes.
    Type: Application
    Filed: August 5, 2015
    Publication date: February 11, 2016
    Inventors: Kenneth Brayman, Daniel Bowers, Cassandra L. Fraser, Edward A. Botchwey, III
  • Patent number: 8728817
    Abstract: The present invention provides methodologies and parameters for fabrication of the hybrid biomaterial by blending pure laminin or complex extracts of tissues containing laminin with biopolymers such as polycaprolactone (PCL), polylactic/polyglycolic acid copolymer (PLGA) or Polydioxanone (PDO) in fluoroalcohols (HFP, TFA), fabrication of substrates and scaffolds and devices from the hybrid biomaterial in forms such as films, nanofibers by electrospinning or microspheres, and the biological or biomedical use of the material or devices derived from it.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 20, 2014
    Assignee: University of Virginia Patent Foundation
    Inventors: Roy Clinton Ogle, Edward A. Botchwey, III, Rebekah A. Neal
  • Publication number: 20140094444
    Abstract: The present application discloses strategies to recruit and mobilize stem cells using S1P receptor selective agonists and antagonists as wells as regulators of chemokine receptors. In an in vivo ischemic model, S1P1/S1P3 activation with FTY720 impeded inflammatory cell infiltration and recruited endothelial progenitor cells (EPCs) with the potential to increase microvascular remodeling. S1P3 expression on marrow-derived cells was essential for this remodeling. Concurrent systemic S1P3 and CXCR4 antagonism mobilized hematopoietic stem cells (HSCs) with the ability to engraft and repopulate blood cells. Pre-treatment of donor HSCs with FTY720 increased homing toward SDF-1 and improved engraftment in marrow. FTY720-coated bone allografts coupled with systemic administration of VPC01091 enhanced bone allograft integration and new bone formation in bone defects. MSCs pre-treated with FTY720 exhibited increased migration toward SDF-1, a CXCR4+ ligand.
    Type: Application
    Filed: March 16, 2012
    Publication date: April 3, 2014
    Applicant: University of Virginia Patent Foundation
    Inventors: Edward A. Botchwey, III, Mary J. Laughlin, Kevin R. Lynch, Anusuya Das, Anthony Awojoodu
  • Publication number: 20120213837
    Abstract: The invention provides compositions and methods useful for treating wounds and enhancing wound healing. The present invention discloses a continuous polymer coating system to provide sustained localized delivery of bioactive agents. The data demonstrate the efficacy of a bioactive coating comprising the polymer PLAGA and the agent FTY720, a selective agonist for sphingosine 1-phosphate receptors, and biologically active derivatives and analogs thereof, for use in wound healing. In vitro drug release studies validated 64% loading efficiency with complete release of compound following 14 days. Mechanical evaluation of healing bone showed significant enhancement of mechanical stability in FTY720 treatment groups. Superior osseous integration across the host-graft interface, significant enhancement in smooth muscle cell investment, and reduction in leukocyte recruitment were evident in FTY720 treated groups. The present invention is useful for enhancing angiogenesis for wound healing.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 23, 2012
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventor: Edward A. Botchwey, III
  • Publication number: 20110236974
    Abstract: The present invention provides methodologies and parameters for fabrication of the hybrid biomaterial by blending pure laminin or complex extracts of tissues containing laminin with biopolymers such as polycaprolactone (PCL), polylactic/polyglycolic acid copolymer (PLGA) or Polydioxanone (PDO) in fluoroalcohols (HFP, TFA), fabrication of substrates and scaffolds and devices from the hybrid biomaterial in forms such as films, nanofibers by electrospinning or microspheres, and the biological or biomedical use of the material or devices derived from it.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 29, 2011
    Applicant: University of Virginia Patent Foundation
    Inventors: Roy Clinton Ogle, Edward A. Botchwey, III, Rebekah A. Neal
  • Publication number: 20100120115
    Abstract: The present invention encompasses methodologies and parameters for the formation of nanofibrous (to microfibrous) laminin via electrospinning. The present application discloses conditions and appropriate parameters to synthesize laminin fibers from a diameter of about 10 nM to a diameter of over 1,000 nM via electrospinning.
    Type: Application
    Filed: May 2, 2008
    Publication date: May 13, 2010
    Applicant: UNIVERSITY OF VIRGINIA PATENT FOUNDATION
    Inventors: Roy Clinton Ogle, Edward A. Botchwey, III