Patents by Inventor Edward A. Giess

Edward A. Giess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5545429
    Abstract: The present invention is directed to a process of a method for the full metallization of thru-holes in a polymer structure comprising the steps of applying a film-forming amount of a conductive polymer-metal composite paste to a metal cathode; bonding a patterned polymer structure to said paste; subjecting said polymer structure to an electrolytic plating bath for a time sufficient to fully metallize thru-hole surfaces in said patterned polymer structure and removing the structure from the cathode assembly. The fully metallized thru-hole polymer structure can then be cleaned and polished to produce a finished product.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: August 13, 1996
    Assignee: International Business Machines Corporation
    Inventors: Richard B. Booth, Emanuel I. Cooper, Edward A. Giess, Mark R. Kordus, Sol Krongelb, Steven P. Ostrander, Judith M. Roldan, Carlos J. Sambucetti, Ravi Saraf
  • Patent number: 5337475
    Abstract: Improved vie-filling compositions for producing conductive vias in circuitized ceramic substrates, particularly multi-layer substrates, without cracking and/or loss of hermetic sealing. The via-filling compositions comprise pastes containing a mixture of (a) ceramic and/or glass spheres of substantially- uniform diameter between about 0.5 and 6 .mu.m, (b) conductive metal particles or spheres having a maximum dimension or diameter between about 1/3 and 1/4 of the diameter of the ceramic and/or glass spheres, and (c) a binder vehicle. The formed conductive via bodies comprise a uniform conductive skeletal network of sintered metal particles densely packed within a uniform matrix of the co-sintered ceramic and/or glass spheres, which matrix is hermetically fused and integrated with ceramic layers forming the wall of the via in the ceramic circuit substrate.
    Type: Grant
    Filed: December 17, 1992
    Date of Patent: August 16, 1994
    Assignee: International Business Machines Corporation
    Inventors: Farid Y. Aoude, Emanuel I. Cooper, Peter R. Duncombe, Shaji Farooq, Edward A. Giess, Young-Ho Kim, Sarah H. Knickerbocker, Friedel Muller-Landau, Mark O. Neisser, Jae M. Park, Robert R. Shaw, Robert A. Rita, Thomas M. Shaw, Rao Vallabhaneni, Jon A. Van Hise, George F. Walker, Jungihl Kim, James M. Brownlow, deceased
  • Patent number: 5283104
    Abstract: Improved via-filling compositions for producing conductive vias in circuitized ceramic substrates, particularly multilayer substrates, without cracking and/or loss of hermetic sealing. The via-filling compositions comprise pastes containing a mixture of (a) ceramic and/or glass spheres of substantially- uniform diameter between about 0.5 and 6 .mu.m, (b) conductive metal particles or spheres having a maximum dimension or diameter between about 1/3 and 1/4 of the diameter of the ceramic and/or glass spheres, and (c) a binder vehicle. The formed conductive via bodies comprise a uniform conductive skeletal network of sintered metal particles densely packed within a uniform matrix of the co-sintered ceramic and/or glass spheres, which matrix is hermetically fused and integrated with ceramic layers forming the wall of the via in the ceramic circuit substrate.
    Type: Grant
    Filed: March 20, 1991
    Date of Patent: February 1, 1994
    Assignee: International Business Machines Corporation
    Inventors: Farid Y. Aoude, Emanuel I. Cooper, Peter R. Duncombe, Shaji Farooq, Edward A. Giess, Young-Ho Kim, Sarah H. Knickerbocker, Friedel Muller-Landau, Mark O. Neisser, Jae M. Park, Robert R. Shaw, Robert A. Rita, Thomas M. Shaw, Rao Vallabhaneni, Jon A. Van Hise, George F. Walker, Jungihl Kim, James M. Brownlow, deceased
  • Patent number: 4962086
    Abstract: High T.sub.c oxide superconductive films can be formed on gallate layers, where the gallate layers include a rare earth element or a rare earth-like element. Combinations of rare earth elements and rare earth-like elements can also be utilized. The superconductive films can be epitaxially deposited on these gallate layers to form single crystals or, in the minimum, highly oriented superconductive layers. Any high T.sub.c superconductive oxide material can be utilized, but the best lattice matches are to superconductive materials including copper oxides. Examples include Y-Ba-Cu-O systems, Bi-based systems and Tl-based systems.
    Type: Grant
    Filed: June 8, 1988
    Date of Patent: October 9, 1990
    Assignee: International Business Machines Corporation
    Inventors: William J. Gallagher, Edward A. Giess, Aranava Gupta, Robert B. Laibowitz, Eugene J. O'Sullivan, Robert L. Sandstrom
  • Patent number: 4540621
    Abstract: A method for forming a substrate for electronic applications having a dielectric constant of less than 6 is disclosed. The method comprises admixing crystalline cordierite particles having a size of 0.1--10 microns with a binder and solvent, casting the same into a sheet, drying the cast sheet into a self-supporting green sheet and then heating the green sheet to burn out the binder and to sinter the particles together. A metallization pattern is deposited on the green sheet after the casting but before the heating, the metallization pattern being molybdenum or tungsten. The cordierite has a defined coefficient of thermal expansion. A dielectric substrate for mounting of integrated circuit devices thereon is also disclosed.
    Type: Grant
    Filed: July 29, 1983
    Date of Patent: September 10, 1985
    Inventors: Carl L. Eggerding, Edward A. Giess