Patents by Inventor Edward A. Neff

Edward A. Neff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9748824
    Abstract: A linear actuator, comprising a base housing, a top housing, and a piston assembly. The base housing may include at least one recess configured to restrain at least one magnet in three dimensions and a channel configured to receive a linear guide. The top housing may be fixedly attached to the base housing and may include at least one recess configured to restrain another at least one magnet in three dimensions. The piston assembly may include at least one coil bobbin, a shaft, a linear encoder scale, and a flex cable, wherein the piston assembly may be positioned between the base housing and the top housing.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: August 29, 2017
    Inventors: Edward A. Neff, Taon M. Vu, Andrew Gladoch, Mark Cato, Sr., Tomas Simunovic
  • Patent number: 9731418
    Abstract: A system and method for using a probe assembly to apply a desired force to a target surface. The method includes moving the probe assembly into an approach position, the approach position being a predetermined distance from the target surface. The probe assembly is then moved from the approach position to the target surface pursuant to a soft landing procedure. The soft landing procedure includes determining that the probe assembly has moved into soft contact with the target surface. The method further includes applying, subsequent to establishment of the soft contact between the probe assembly and the target surface, force to the probe assembly until an applied force on the target surface reaches the desired force. The applied force may then be monitored based upon an output of a load cell responsive to a force exerted by the probe assembly.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: August 15, 2017
    Inventors: Edward A. Neff, Toan M. Vu
  • Publication number: 20170089976
    Abstract: A system, apparatus, and method for using a magnetic latch to maintain a desired force between a test-probe assembly and a surface of a component. The method includes moving the test-probe assembly into an approach position, the approach position being a predetermined distance from the surface of a component. The test-probe assembly is then moved from the approach position to the surface of a component pursuant to a soft landing procedure. The method further includes magnetically latching the test-probe assembly in contact with the surface of a component at a constant force. The moving coil of the actuator can be de-energized while the test-probe assembly performs measurements on the component. After the testing is completed, the moving coil is energized and the test-probe assembly is retracted away from the component. The applied force may be monitored based upon an output of a load cell responsive to a force exerted by the test-probe assembly.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 30, 2017
    Inventors: Edward A. Neff, Toan M. Vu
  • Publication number: 20170014964
    Abstract: A system and method for measuring a distance to a target work surface to precisely position a tool assembly coupled to an actuator. The method includes measuring a distance to a work surface using a distance sensor, moving the tool assembly into an approach position, the approach position being adjacent to a location on the work surface. The tool assembly is then moved from the approach position to the location on the work surface pursuant to a soft landing procedure. The soft landing procedure may include determining that the tool assembly has moved into soft contact with the target work surface. Methods also include topologically mapping a work surface, comparing map data to predefined data, and adjusting a positioning routine. Additionally, methods include optimizing actuator movements to timely measure distances from a distance sensor to a location on a work surface with minimal actuator movement.
    Type: Application
    Filed: January 22, 2016
    Publication date: January 19, 2017
    Inventor: Edward A. Neff
  • Publication number: 20170012519
    Abstract: Disclosed herein are apparatus and methods for linear actuators that can deliver strokes and forces at different values. The linear actuators include both multi-coil and single-coil actuator designs. The linear actuators include a controller that is removably or permanently coupled to a piston assembly having any number of coils. An encoder may also be removably or permanently coupled to the piston assembly. The piston assembly, controller and encoder move as one unit during actuation of the linear actuator.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Inventors: Edward A. Neff, Toan M. Vu
  • Publication number: 20160229064
    Abstract: A prosthetic finger, comprising: a first axis of movement comprising a moving magnet; a second axis of movement comprising a moving coil, wherein the second axis is generally orthogonal to the first axis; and a third axis of movement comprising a moving magnet, wherein the third axis of movement is generally oriented in the same direction as the first axis of movement.
    Type: Application
    Filed: January 7, 2016
    Publication date: August 11, 2016
    Applicant: Systems, Machines, Automation Components Corporation
    Inventors: Edward A. Neff, Toan M. Vu, Johannes Theodorus Antonius van de Ven, Michael A. Ferris, Naoyuki Okada, David D. Huang
  • Patent number: 9381649
    Abstract: A robotic finger, comprising: a first axis of movement comprising a moving magnet; a second axis of movement comprising a moving coil, wherein the second axis is generally orthogonal to the first axis; and a third axis of movement comprising a moving magnet, wherein the third axis of movement is generally oriented in the same direction as the first axis of movement.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: July 5, 2016
    Inventors: Edward A. Neff, Toan M. Vu, Johannes Theodorus Antonius van de Ven, Michael A. Ferris, Naoyuki Okada, David D. Huang
  • Publication number: 20160184989
    Abstract: A system and method for using a probe assembly to apply a desired force to a target surface. The method includes moving the probe assembly into an approach position, the approach position being a predetermined distance from the target surface. The probe assembly is then moved from the approach position to the target surface pursuant to a soft landing procedure. The soft landing procedure includes determining that the probe assembly has moved into soft contact with the target surface. The method further includes applying, subsequent to establishment of the soft contact between the probe assembly and the target surface, force to the probe assembly until an applied force on the target surface reaches the desired force. The applied force may then be monitored based upon an output of a load cell responsive to a force exerted by the probe assembly.
    Type: Application
    Filed: October 6, 2015
    Publication date: June 30, 2016
    Inventors: Edward A. Neff, Toan M. Vu
  • Patent number: 9375848
    Abstract: A prosthetic finger, comprising: a first axis of movement comprising a moving magnet; a second axis of movement comprising a moving coil, wherein the second axis is generally orthogonal to the first axis; and a third axis of movement comprising a moving magnet, wherein the third axis of movement is generally oriented in the same direction as the first axis of movement.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 28, 2016
    Inventors: Edward A. Neff, Toan M. Vu, Johannes Theodorus Antonius van de Ven, Michael A. Ferris, Naoyuki Okada, David D. Huang
  • Publication number: 20160013712
    Abstract: Serial linear actuators that are compact in size and can operate at high speeds with reduced failure rates. The disclosed linear actuators may be used in sub micron positioning applications such as, for example, in semiconductor or biotechnology scanning applications. An actuator apparatus may include a magnet housing which defines an interior volume in which a permanent magnet and a moving coil assembly are disposed. The moving coil assembly includes electrically conductive coils wound around a set of substantially flat moving coil scaffolds. The moving coil assembly is centrally located within the actuator between a set of outer cross roller guides to reduce or eliminate the internal moment effect of the coil on the guiding system of the actuator and to allow the actuator to have a small height and compact form factor.
    Type: Application
    Filed: April 3, 2015
    Publication date: January 14, 2016
    Inventors: Edward A. Neff, Toan M. Vu
  • Publication number: 20150303785
    Abstract: A direct drive motor for a robotic finger. The direct drive motor includes a plurality of outer magnets and a coil assembly including a plurality of coils surrounded by the plurality of outer magnets. The plurality of coils are configured to generate a magnetic field when current is conducted through them such that the coil assembly rotates relative to the plurality of outer magnets. The direct drive motor further includes a plurality of inner magnets surrounded by the plurality of coils and a core element surrounded by the plurality of inner magnets. A center rotation shaft is positioned within an interior space circumscribed by the core element.
    Type: Application
    Filed: January 30, 2015
    Publication date: October 22, 2015
    Inventors: Edward A. Neff, Taon M. Vu, David D. Huang, Naoyuki Okada, Andrew Gladoch
  • Publication number: 20150171723
    Abstract: An actuator apparatus includes a magnet housing defining an interior volume between a first opening at a first end and a second opening at a second end. Multiple magnets are included within the magnet housing. A piston assembly includes a piston housing, a coil and a shaft. A magnetic pole is configured to be received through the second opening of the magnet housing and within the interior volume. The magnetic pole defines an interior lumen and an opening in communication with the interior lumen. At least a portion of the piston assembly is configured to be movably received through the first opening of the magnet housing and within the interior volume such that the magnetic pole is received within the interior region of the piston housing and at least a portion of the shaft is received within the interior lumen of the magnetic pole.
    Type: Application
    Filed: October 24, 2014
    Publication date: June 18, 2015
    Inventors: Edward A. Neff, Toan M. Vu, David D. Huang, Naoyuki Okada, Andrew Gladoch, Jaime Sandoval
  • Publication number: 20140159514
    Abstract: A linear actuator, comprising a base housing, a top housing, and a piston assembly. The base housing may comprise at least one recess configured to restrain at least one magnet in three dimensions and a channel configured to receive a linear guide. The top housing may be fixedly attached to the base housing and may comprise at least one recess configured to restrain another at least one magnet in three dimensions. The piston assembly may comprise at least one coil bobbin, a shaft, a linear encoder scale, and a flex cable, wherein the piston assembly may be positioned between the base housing and the top housing.
    Type: Application
    Filed: June 25, 2013
    Publication date: June 12, 2014
    Applicant: Systems, Machines, Automation Components Corporation
    Inventors: Edward A. Neff, Taon M. Vu, Andrew Gladoch, Mark Cato, SR., Tomas Simunovic
  • Publication number: 20140159407
    Abstract: A prosthetic finger, comprising: a first axis of movement comprising a moving magnet; a second axis of movement comprising a moving coil, wherein the second axis is generally orthogonal to the first axis; and a third axis of movement comprising a moving magnet, wherein the third axis of movement is generally oriented in the same direction as the first axis of movement.
    Type: Application
    Filed: June 25, 2013
    Publication date: June 12, 2014
    Applicant: Syetems, Machines, Automation Components Corporation
    Inventors: Edward A. Neff, Toan M. Vu, Johannes Theodorus Antonius van de Ven, Michael A. Ferris, Naoyuki Okada, David D. Huang
  • Publication number: 20140159408
    Abstract: A robotic finger, comprising: a first axis of movement comprising a moving magnet; a second axis of movement comprising a moving coil, wherein the second axis is generally orthogonal to the first axis; and a third axis of movement comprising a moving magnet, wherein the third axis of movement is generally oriented in the same direction as the first axis of movement.
    Type: Application
    Filed: June 25, 2013
    Publication date: June 12, 2014
    Applicant: Systems, Machines, Automation Components Corporation
    Inventors: Edward A. Neff, Toan M. Vu, Johannes Theodorus Antonius van de Ven, Michael A. Ferris, Naoyuki Okada, David D. Huang
  • Publication number: 20140159513
    Abstract: A linear actuator, comprising a base housing, a top housing, and a piston assembly. The base housing may comprise at least one recess configured to restrain at least one magnet in three dimensions and a channel configured to receive a linear guide. The top housing may be fixedly attached to the base housing and may comprise at least one recess configured to restrain another at least one magnet in three dimensions. The piston assembly may comprise at least one coil bobbin, a shaft, a linear encoder scale, and a flex cable, wherein the piston assembly may be positioned between the base housing and the top housing.
    Type: Application
    Filed: June 25, 2013
    Publication date: June 12, 2014
    Applicant: Systems, Machines, Automation Components Corporation
    Inventors: Edward A. Neff, Taon M. Vu, Andrew Gladoch, Mark Cato, Tomas Simunovic
  • Patent number: 8567571
    Abstract: A friction rail skate comprising a base having a guide portion for supporting and steering along a rail and a tongue where the base is detachably connected to the tongue.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: October 29, 2013
    Assignee: L&M Pattern Manufacturing Company, Inc.
    Inventors: Scott Edward Neff, Jerry L. Lockridge, Wendell M. Scott
  • Publication number: 20120080960
    Abstract: Disclosed herein are methods and systems for low cost linear actuators that can deliver strokes and forces at different values. The embodiments presented herein have parts and components that may be usable for both multi-coil and single-coil actuator designs. According to one embodiment, a magnet housing may removably or permanently coupled to a coil assembly having any number of coils. According to a further embodiment, an actuator housing may be coupled to a magnet housing having any number of magnets or coils.
    Type: Application
    Filed: September 23, 2011
    Publication date: April 5, 2012
    Inventors: Edward A. Neff, David Huang, Toan VU
  • Publication number: 20120043832
    Abstract: Methods and apparatus for a compact linear actuator having an improved rotary mechanism are disclosed herein. In one embodiment, the linear actuator comprises a spline bearing for guiding the shaft of the actuator as it is linearly actuated. A rotor positioned around the spline bearing rotatably engages the spline bearing when magnetically actuated by a surrounding stator. A rotational lock connected to the piston assembly may be used to prevent the piston assembly from rotating during operation. Optionally, a rotary scale may be attached to the spline bearing in order to indicate how far the shaft has rotated. Since the shaft does not bear the mass of the rotary mechanism, linear performance of the actuator is substantially improved.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 23, 2012
    Inventors: Edward A. NEFF, Toan M. Vu
  • Publication number: 20090058581
    Abstract: This invention describes a compact linear moving coil actuator that incorporates a piston bobbin coil assembly that provides a shaft with linear reciprocal movement. Optionally, a rotary motor can be coupled to the shaft to provide rotary reciprocal movement. The piston and bobbin sections of the piston bobbin coil assembly may be integrally formed as a single unitary piece and easily changed in size and/or configuration during manufacture to enable easier and more cost-effective assembly of various actuator sizes and configurations. Additionally, the compact size of the actuator requires less work space and also allows multiple actuators to be positioned next to each for various applications.
    Type: Application
    Filed: August 1, 2008
    Publication date: March 5, 2009
    Inventors: Edward A. NEFF, Toan Vu, Karl Stocks, Naoyuki Okada, Andrew Gladoch