Patents by Inventor Edward A. Preble

Edward A. Preble has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110127544
    Abstract: A templated substate includes a base layer, and a template layer disposed on the base layer and having a composition including a single-crystal Group Ill nitride. The template layer includes a continuous sublayer on the base layer and a nanocolumnar sublayer on the first sublayer, wherein the nanocolumnar sublayer includes a plurality of nano-scale columns.
    Type: Application
    Filed: May 6, 2009
    Publication date: June 2, 2011
    Applicant: KYMA TECHNOLOGIES
    Inventors: Tanya Paskova, Edward A. Preble, Terry L. Clites, Andrew D. Hanser, Keith R. Evans
  • Patent number: 7897490
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 1, 2011
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20110042682
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Application
    Filed: August 12, 2010
    Publication date: February 24, 2011
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20100327291
    Abstract: In a method for making a GaN article, an epitaxial nitride layer is deposited on a single-crystal substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode. A GaN transitional layer is grown on the 3D nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. A bulk GaN layer is grown on the transitional layer by HVPE under the substantially 2D growth mode. A polycrystalline GaN layer is grown on the bulk GaN layer to form a GaN/substrate bi-layer. The GaN/substrate bi-layer may be cooled from the growth temperature to an ambient temperature, wherein GaN material cracks laterally and separates from the substrate, forming a free-standing article.
    Type: Application
    Filed: November 30, 2006
    Publication date: December 30, 2010
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Lianghong Liu, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Patent number: 7777217
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: August 17, 2010
    Assignee: Kyma Technologies, Inc.
    Inventors: Edward A. Preble, Denis Tsvetkov, Andrew D. Hanser, N. Mark Williams, Xueping Xu
  • Publication number: 20100044718
    Abstract: Group III (Al, Ga, In)N single crystals, articles and films useful for producing optoelectronic devices (such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors) and electronic devices (such as high electron mobility transistors (HEMTs)) composed of III-V nitride compounds, and methods for fabricating such crystals, articles and films.
    Type: Application
    Filed: November 30, 2006
    Publication date: February 25, 2010
    Inventors: Andrew D. Hanser, Lianghong Liu, Edward A. Preble, Denis Tsvetkov, Nathaniel Mark Williams, Xueping Xu
  • Publication number: 20070141823
    Abstract: In a method for making an inclusion-free uniformly semi-insulating GaN crystal, an epitaxial nitride layer is deposited on a substrate. A 3D nucleation GaN layer is grown on the epitaxial nitride layer by HVPE under a substantially 3D growth mode, wherein a surface of the nucleation layer is substantially covered with pits and the aspect ratio of the pits is essentially the same. A GaN transitional layer is grown on the nucleation layer by HVPE under a condition that changes the growth mode from the substantially 3D growth mode to a substantially 2D growth mode. After growing the transitional layer, a surface of the transitional layer is substantially pit-free. A bulk GaN layer is grown on the transitional layer by HVPE. After growing the bulk layer, a surface of the bulk layer is smooth and substantially pit-free. The GaN is doped with a transition metal during at least one of the foregoing GaN growth steps.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 21, 2007
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward Preble, Denis Tsvetkov, Andrew Hanser, N. Williams, Xueping Xu
  • Publication number: 20070138505
    Abstract: In a method for making a low-defect single-crystal GaN film, an epitaxial nitride layer is deposited on a substrate. A first GaN layer is grown on the epitaxial nitride layer by HVPE under a growth condition that promotes the formation of pits, wherein after growing the first GaN layer the GaN film surface morphology is rough and pitted. A second GaN layer is grown on the first GaN layer to form a GaN film on the substrate. The second GaN layer is grown by HVPE under a growth condition that promotes filling of the pits, and after growing the second GaN layer the GaN film surface morphology is essentially pit-free. A GaN film having a characteristic dimension of about 2 inches or greater, and a thickness normal ranging from approximately 10 to approximately 250 microns, includes a pit-free surface, the threading dislocation density being less than 1×108 cm?2.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 21, 2007
    Applicant: Kyma Technologies, Inc.
    Inventors: Edward Preble, Lianghong Liu, Andrew Hanser, N. Williams, Xueping Xu