Patents by Inventor Edward Ackerman

Edward Ackerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10775819
    Abstract: A multi-loop voltage regulator with load tracking compensation includes a first closed-loop feedback network configured to receive a supply voltage from a power supply and drive an output voltage that is smaller than the supply voltage to a load. The multi-loop voltage regulator includes a second closed-loop feedback network connected to the first closed-loop feedback network and configured to regulate the output voltage between a first supply voltage rail and a second supply voltage rail for a given load current, in which the second closed-loop feedback network produces a gain that is greater than that of the first closed-loop feedback network. The multi-loop voltage regulator also includes a load tracking compensation circuit configured to detect a load current, and to increase the gain of the second closed-loop feedback network based on a dominant pole in the second closed-loop feedback network being a function of the detected load current.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: September 15, 2020
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Kevin Roy Vannorsdel, Yongjie Jiang, John Lynn McNitt, Jay Edward Ackerman
  • Publication number: 20200225689
    Abstract: A multi-loop voltage regulator with load tracking compensation includes a first closed-loop feedback network configured to receive a supply voltage from a power supply and drive an output voltage that is smaller than the supply voltage to a load. The multi-loop voltage regulator includes a second closed-loop feedback network connected to the first closed-loop feedback network and configured to regulate the output voltage between a first supply voltage rail and a second supply voltage rail for a given load current, in which the second closed-loop feedback network produces a gain that is greater than that of the first closed-loop feedback network. The multi-loop voltage regulator also includes a load tracking compensation circuit configured to detect a load current, and to increase the gain of the second closed-loop feedback network based on a dominant pole in the second closed-loop feedback network being a function of the detected load current.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 16, 2020
    Inventors: Kevin Roy VANNORSDEL, Yongjie Jiang, John Lynn McNitt, Jay Edward Ackerman
  • Patent number: 9411387
    Abstract: A circuit for a switching charger includes multiple input supply nodes, and a number of charging paths. Each input supply node is connectable to a power source. Each charging path may include a middle node connected to a coupling switch and a pass transistor. The coupling switch may be configured to activate a corresponding charging path of the charging paths. A pre-charging switch may be coupled to a corresponding middle node of each charging path. The pass transistor of an activated one of the charging paths may be configured to provide a switching voltage at an input of a charging sub-circuit. The pre-charging switch may be configurable to pre-charge a middle node of a non-activated path to a high voltage to prevent an unwanted high current passing through a body diode of a corresponding pass transistor of the non-activated path.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: August 9, 2016
    Assignee: Broadcom Corporation
    Inventors: Prasanna Obala Bhuvanesh, Jay Edward Ackerman, Michael Owen Baker, Ryan Michael Desrosiers
  • Publication number: 20150137766
    Abstract: A circuit for a switching charger includes multiple input supply nodes, and a number of charging paths. Each input supply node is connectable to a power source. Each charging path may include a middle node connected to a coupling switch and a pass transistor. The coupling switch may be configured to activate a corresponding charging path of the charging paths. A pre-charging switch may be coupled to a corresponding middle node of each charging path. The pass transistor of an activated one of the charging paths may be configured to provide a switching voltage at an input of a charging sub-circuit. The pre-charging switch may be configurable to pre-charge a middle node of a non-activated path to a high voltage to prevent an unwanted high current passing through a body diode of a corresponding pass transistor of the non-activated path.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 21, 2015
    Applicant: BROADCOM CORPORATION
    Inventors: Prasanna OBALA BHUVANESH, Jay Edward Ackerman, Michael Owen Baker, Ryan Michael Desrosiers
  • Patent number: 8868006
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 21, 2014
    Assignee: Photonic Systems, Inc.
    Inventors: Charles Cox, Edward Ackerman
  • Patent number: 8193772
    Abstract: A system and method are provided for safely recharging a battery. A current source is coupled to a node and configured to produce a current. The battery is coupled to the node, and is configured to recharge during a recharging cycle based on receiving the current through the node. An overvoltage protection system is coupled between the node and the current source, and configured to disable the current source when a voltage at the node exceeds a threshold value. For example, the current source may be substantially instantaneously disabled when this occurs.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: June 5, 2012
    Assignee: Broadcom Corporation
    Inventors: Russell Eliot Radke, Jay Edward Ackerman, Pieter Vorenkamp
  • Patent number: 7826751
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: November 2, 2010
    Assignee: Photonic Systems, Inc.
    Inventors: Charles Cox, Edward Ackerman
  • Patent number: 7780809
    Abstract: A method of forming an elastomeric tire component is provided, comprising the following steps. An apparatus is provided which includes a rotating applicator head and a non-rotating portion. The non-rotating portion has an internal channel having a first end in fluid communication with a gear pump and a second end in fluid communication with a first channel of the rotating applicator head. The first channel is substantially aligned with the Z axis. The rotating applicator head further includes a second channel in fluid communication with the first channel, and wherein the second channel is oriented at an angle with respect to a Y axis and is in fluid communication with a nozzle. The method further includes pumping a strip of elastomeric material through said internal channel and then into said first and second channel, and then through an outlet of said nozzle onto a surface.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: August 24, 2010
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Brian Richard Koch, Gary Robert Burg, Scott Edward Ackerman, Christopher David Dyrlund
  • Publication number: 20090274466
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Application
    Filed: June 12, 2009
    Publication date: November 5, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Publication number: 20090263081
    Abstract: A bi-directional signal interface includes a carrier signal source that generates a carrier traveling wave at an output. A first traveling wave structure includes a first and a second waveguide having an input that is coupled to the output of the carrier signal source. The first and second waveguide propagate the carrier traveling wave. A second traveling wave structure includes an outgoing signal port that receives an outgoing signal and a bi-directional signal port that receives an incoming electrical signal and provides the outgoing signal. The first and second traveling wave structures have an electromagnetic interaction region with a geometry that is chosen for a desired outgoing-to-incoming signal isolation. A detector having an input coupled to the output of the first traveling wave structure generates an electrical signal related to the incoming electrical signal.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 22, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Patent number: 7604148
    Abstract: A method and device is provided for reducing the tension on an elastomeric feed strip. The method includes providing a device for engagement with the feed strip, pushing the feed strip forward by the device when the feed strip stops or when the tension exceeds a certain value, and then pushing the strip in the direction of travel.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: October 20, 2009
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Scott Edward Ackerman, Christopher David Dyrlund, Gary Robert Burg, Brian Richard Koch
  • Publication number: 20090247074
    Abstract: A bi-directional signal interface includes a first waveguide that propagates a first traveling wave. The first waveguide has one end that is coupled to a RF input port that receives a RF transmission signal and another end that is coupled to a RF bi-directional port that receives a RF reception signal and that transmits the RF transmission signal. A second waveguide is positioned proximate to the first waveguide. The second waveguide has one end that is coupled to an output port that passes the received RF reception signal. A non-reciprocal coupler couples fields from the first waveguide to the second waveguide so that the RF reception signal from the bi-directional port couples from the first waveguide to the second waveguide in a substantially non-reciprocal manner and then passes through the output port, and the RF transmission signal from the RF input port passes through the first waveguide to the RF bi-directional port.
    Type: Application
    Filed: May 22, 2009
    Publication date: October 1, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Publication number: 20080246442
    Abstract: A system and method are provided for safely recharging a battery. A current source is coupled to a node and configured to produce a current. The battery is coupled to the node, and is configured to recharge during a recharging cycle based on receiving the current through the node. An overvoltage protection system is coupled between the node and the current source, and configured to disable the current source when a voltage at the node exceeds a threshold value. For example, the current source may be substantially instantaneously disabled when this occurs.
    Type: Application
    Filed: April 1, 2008
    Publication date: October 9, 2008
    Applicant: Broadcom Corporation
    Inventors: Russell Eliot Radke, Jay Edward Ackerman, Pieter Vorenkamp
  • Publication number: 20080111016
    Abstract: A method and device is provided for reducing the tension on an elastomeric feed strip. The method includes providing a device for engagement with the feed strip, pushing the feed strip forward by the device when the feed strip stops or when the tension exceeds a certain value, and then pushing the strip in the direction of travel.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 15, 2008
    Inventors: Scott Edward Ackerman, Christopher David Dyrlund, Gary Robert Burg, Brian Richard Koch
  • Patent number: 7262902
    Abstract: An optical resonant modulator includes an optical ring resonator and an optical loop that is coupled to the optical ring resonator by two couplers. The optical ring resonator can have a hybrid design in which the ring resonator is formed on an electro-optically passive material and the optical loop is formed on an electro-optically active material. An amplification section can be inserted between the electro-optically passive and the electro-optically active sections. In analog applications, an optical resonator includes a Mach Zehnder interferometer section having an input and an output, with a feedback path coupling the output to the input. Applications of the optical modulator of the invention, and a method for modulating an optical signal also are disclosed.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: August 28, 2007
    Assignee: Photonic Systems, Inc.
    Inventors: William K. Burns, Joelle Prince, Edward Ackerman
  • Publication number: 20060083456
    Abstract: An optical resonant modulator includes an optical ring resonator and an optical loop that is coupled to the optical ring resonator by two couplers. The optical ring resonator can have a hybrid design in which the ring resonator is formed on an electro-optically passive material and the optical loop is formed on an electro-optically active material. An amplification section can be inserted between the electro-optically passive and the electro-optically active sections. In analog applications, an optical resonator includes a Mach Zehnder interferometer section having an input and an output, with a feedback path coupling the output to the input. Applications of the optical modulator of the invention, and a method for modulating an optical signal also are disclosed.
    Type: Application
    Filed: October 20, 2004
    Publication date: April 20, 2006
    Applicant: Photonic Systems, Inc.
    Inventors: William Burns, Joelle Prince, Edward Ackerman
  • Patent number: 6246500
    Abstract: A modulator driven by an externally applied RF signal intensity modulates carrier signals at different wavelengths. The modulator bias voltage and the ratio of the optical powers of the carrier signals are selected to minimize second and third order distortion. The modulated signals are separately detected and the resulting electrical signals are combined to yield a linearized representation of the RF signal. An electro-optic device capable of wavelength multiplexing and demultiplexing can independently and jointly control the bias voltages for the transfer functions of the two carrier signals.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: June 12, 2001
    Assignee: Massachusetts Institute of Technology
    Inventor: Edward Ackerman