Patents by Inventor Edward Beam, III

Edward Beam, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170133295
    Abstract: The present disclosure relates to a process of forming a semiconductor device with a high thermal conductivity substrate. According to an exemplary process, a semiconductor precursor including a substrate structure, a buffer structure over the substrate structure, and a channel structure over the buffer structure is provided. The channel structure has a first channel surface and a second channel surface, which is opposite the first channel surface, adjacent to the buffer structure, and has a first polarity. Next, a high thermal conductivity substrate with a thermal conductivity greater than 400 W/mK is formed over the first channel surface. A heat sink carrier is then provided over the high thermal conductivity substrate. Next, the substrate structure and the buffer structure are removed to provide a thermally enhanced semiconductor device with an exposed surface, which has the first polarity.
    Type: Application
    Filed: August 30, 2016
    Publication date: May 11, 2017
    Inventors: Xing Gu, Jinqiao Xie, Edward A. Beam, III, Cathy Lee
  • Publication number: 20170133239
    Abstract: The present disclosure relates to a process of forming a high thermal conductivity substrate for an Aluminum/Gallium/Indium (III)-Nitride semiconductor device. According to an exemplary process, a semiconductor precursor including a substrate structure and a buffer structure is provided. The buffer structure is formed over the substrate structure and has a first buffer surface and a second buffer surface. Herein, the second buffer surface is adjacent to the substrate structure and the first buffer surface is opposite the second buffer surface. Next, a high thermal conductivity substrate with a thermal conductivity greater than 400 W/mK is formed over the first buffer surface. A heat sink carrier is then provided over the high thermal conductivity substrate. The substrate structure is then substantially removed to provide a thermally enhanced precursor for the III-Nitride semiconductor device.
    Type: Application
    Filed: August 30, 2016
    Publication date: May 11, 2017
    Inventors: Xing Gu, Jinqiao Xie, Edward A. Beam, III, Cathy Lee
  • Patent number: 9640650
    Abstract: Embodiments include high electron mobility transistors (HEMTs) comprising a substrate and a barrier layer including a doped component. The doped component may be a germanium doped layer or a germanium doped pulse. Other embodiments may include methods for fabricating such a HEMT.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: May 2, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Edward A. Beam, III, Jinqiao Xie
  • Patent number: 9337278
    Abstract: Embodiments include but are not limited to semiconductor devices including a barrier layer, a gallium nitride channel layer having a Ga-face coupled with the barrier layer, and a thermoconductive layer having a thermal conductivity of at least 500 W/(m·K) within 1000 nanometers of a Ga-face of the gallium nitride channel layer. The semiconductor device may be a high-electron-mobility transistor or a semiconductor wafer. Methods for making the same also are described.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: May 10, 2016
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Xing Gu, Jinqiao Xie, Edward A. Beam, III, Deep C. Dumka, Cathy C. Lee
  • Patent number: 9202905
    Abstract: Embodiments include apparatuses and methods related to an HFET. In embodiments, one or all of the buffer layer, the back-barrier layer, or the barrier layer may be formed of a digital alloy. In embodiments, the digital alloy may include alternating layers of alloys of aluminum, gallium, and nitrogen. Other embodiments may be disclosed or claimed herein.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: December 1, 2015
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Jinqiao Xie, Edward A. Beam, III, Ming-Yih Kao, Hua-Quen Tserng, Paul Saunier
  • Publication number: 20150200287
    Abstract: Embodiments include high electron mobility transistors (HEMTs) comprising a substrate and a barrier layer including a doped component. The doped component may be a germanium doped layer or a germanium doped pulse. Other embodiments may include methods for fabricating such a HEMT.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 16, 2015
    Applicant: TriQuint Semiconductor, Inc.
    Inventors: Edward A. Beam, III, Jinqiao Xie
  • Patent number: 9029914
    Abstract: Embodiments of the present disclosure describe apparatuses, methods, and systems of an integrated circuit (IC) device. The IC device may include a buffer layer disposed on a substrate, the buffer layer including gallium (Ga) and nitrogen (N) and a barrier layer disposed on the buffer layer, the barrier layer including aluminum (Al) and nitrogen (N). The IC device may further include a gate terminal and a gate dielectric layer disposed between the gate terminal and the barrier layer and/or between the gate terminal and the buffer layer. In various embodiments, the gate dielectric layer may include a fluoride- or chloride-based compound, such as calcium fluoride (CaF2).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: May 12, 2015
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Edward A. Beam, III, Paul Saunier
  • Patent number: 8975664
    Abstract: Embodiments of the present disclosure describe apparatuses, methods, and systems of an integrated circuit (IC) device. The IC device may include a buffer layer disposed on a substrate, the buffer layer including gallium (Ga) and nitrogen (N), a barrier layer disposed on the buffer layer, the barrier layer including aluminum (Al) and nitrogen (N), a regrown structure disposed in and epitaxially coupled with the barrier layer, the regrown structure including nitrogen (N) and at least one of aluminum (Al) or gallium (Ga) and being epitaxially deposited at a temperature less than or equal to 600° C., and a gate terminal disposed in the barrier layer, wherein the regrown structure is disposed between the gate terminal and the buffer layer. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: March 10, 2015
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Paul A. Saunier, Edward A. Beam, III
  • Patent number: 8778747
    Abstract: Embodiments include but are not limited to apparatuses and systems including a buffer layer, a group III-V layer over the buffer layer, a source contact and a drain contact on the group III-V layer, and a regrown Schottky layer over the group III-V layer, and between the source and drain contacts. The embodiments further include methods for making the apparatuses and systems. Other embodiments may be described and claimed.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: July 15, 2014
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: Edward A. Beam, III
  • Publication number: 20140001478
    Abstract: Embodiments of the present disclosure describe apparatuses, methods, and systems of an integrated circuit (IC) device. The IC device may include a buffer layer disposed on a substrate, the buffer layer including gallium (Ga) and nitrogen (N), a barrier layer disposed on the buffer layer, the barrier layer including aluminum (Al) and nitrogen (N), a regrown structure disposed in and epitaxially coupled with the barrier layer, the regrown structure including nitrogen (N) and at least one of aluminum (Al) or gallium (Ga) and being epitaxially deposited at a temperature less than or equal to 600° C., and a gate terminal disposed in the barrier layer, wherein the regrown structure is disposed between the gate terminal and the buffer layer. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 2, 2014
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventors: Paul Saunier, Edward A. Beam, III
  • Publication number: 20120302178
    Abstract: Embodiments include but are not limited to apparatuses and systems including a buffer layer, a group III-V layer over the buffer layer, a source contact and a drain contact on the group III-V layer, and a regrown Schottky layer over the group III-V layer, and between the source and drain contacts. The embodiments further include methods for making the apparatuses and systems. Other embodiments may be described and claimed.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: TRIQUINT SEMICONDUCTOR, INC.
    Inventor: Edward A. Beam, III
  • Patent number: 7148463
    Abstract: A photodetector includes a high-indium-concentration (H-I-C) absorption layer having a Group III sublattice indium concentration greater than 53%. The H-I-C absorption layer improves responsivity without decreasing bandwidth. The photoconversion structure that includes the H-I-C absorption layer can be formed on any type of substrate through the use of a metamorphic buffer layer to provide a lattice constant gradient between the photoconversion structure and the substrate. The responsivity of the photodetector can be further improved by passing an incoming optical signal through the H-I-C absorption layer at least twice.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: December 12, 2006
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Aaditya Mahajan, Edward A. Beam, III, Jose L. Jiminez, Andrew A. Ketterson
  • Patent number: 6787826
    Abstract: A high electron mobility transistor is constructed with a substrate, a lattice-matching buffer layer formed on the substrate, and a heavily doped p-type barrier layer formed on the buffer layer. A spacer layer is formed on the barrier layer, and a channel layer is formed on the spacer layer. The channel layer may be of uniform composition, or may be made from two or more sublayers. A Schottky layer is formed over the channel layer, and source and drain contacts are formed on the Schottky layer. The substrate may be gallium arsenide, indium phosphide, or other suitable material, and the various semiconductor layers formed over the substrate contain indium. The transistor's transition frequency of the transistor is above 200 GHz.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: September 7, 2004
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Hua Quen Tserng, Edward A. Beam, III, Ming-Yih Kao
  • Patent number: 6697412
    Abstract: A light-emitting device includes a GaAs substrate, a light-emitting structure disposed above the substrate and capable of emitting light having a wavelength of about 1.3 microns to about 1.55 microns, and a buffer layer disposed between the substrate and the light-emitting structure. The composition of the buffer layer varies through the buffer layer such that a lattice constant of the buffer layer grades from a lattice constant approximately equal to a lattice constant of the substrate to a lattice constant approximately equal to a lattice constant of the light-emitting structure. The light-emitting device exhibits improved mechanical, electrical, thermal, and optical properties compared to similar light-emitting devices grown on InP substrates.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: February 24, 2004
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Edward A. Beam, III, Gary A. Evans, Paul Saunier, Ming-Yih Kao, David M. Fanning, William H. Davenport, Andy Turudic, Walter A. Wohlmuth
  • Patent number: 5952059
    Abstract: A method is provided for forming a piezoelectric layer with improved texture. In the method, a metallic material is evaporated. A noble gas is combined with a reactant gas. An atomic reactant gas flow is generated from the combined gas using a plasma source. The atomic reactant gas flow is introduced to the evaporated metallic material in the presence of a substrate under molecular flow pressure conditions to form a piezoelectric layer with improved texture on the surface of the substrate.
    Type: Grant
    Filed: October 9, 1997
    Date of Patent: September 14, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Edward A. Beam, III, Andrew J. Purdes
  • Patent number: 5935641
    Abstract: A method is provided for forming a piezoelectric layer with improved texture. In the method, a seed material is deposited on a substrate (12) at a low deposition rate to form a seed layer (16). The low deposition rate may be a rate in the range of 10.0-150 nanometers per hour. A piezoelectric material is deposited on the seed layer at a high deposition rate to form a bulk piezoelectric layer (20) having improved texture. The high deposition rate can be a rate in the range of 500-5000 nanometers per hour.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: August 10, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Edward A. Beam, III, Andrew J. Purdes
  • Patent number: 5893390
    Abstract: An apparatus (10) is provided for controlling the flow of a fluid. The apparatus (10) includes a housing (12) having an inlet port (14), an outlet port (16), and a bypass port (18). A throughput block (26) is contained within the housing (12). The throughput block (26) has a number of cylinders (28) formed therein. A number of pistons (34) are received within the cylinders (28). Each piston (34) can move within a corresponding cylinder (28) between a first position and a second position. En the first position, the piston (34) prevents fluid communication between the inlet port (14) and the outlet port (16) and allows fluid communication between the inlet port (14) and the bypass port (18). In the second position, the piston (34) prevents fluid communication between the inlet port (14) and the bypass port (18) and allows fluid communication between the inlet port (14) and the outlet port (16).
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: April 13, 1999
    Assignee: Texas Instruments Incorporated
    Inventor: Edward A. Beam, III
  • Patent number: 5534714
    Abstract: This is an integrated device which comprises an integrated transistor and resonant tunneling diode where the transistor comprises a substrate 10, a buffer layer 12 over the substrate 10, and a channel layer 14 over the buffer layer 12; and the resonant tunneling diode (RTD) comprises a first contact layer 18, a first tunnel barrier layer 20 over the first contact layer 18, a quantum well 22 over the first tunnel barrier layer 20, a second tunnel barrier layer 24 over the quantum well 22, and a second contact layer 26 over the second tunnel barrier layer 24. Other devices and methods are also disclosed.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: July 9, 1996
    Assignee: Texas Instruments Incorporated
    Inventors: Edward A. Beam, III, Alan C. Seabaugh
  • Patent number: 5416040
    Abstract: This is an integrated device which comprises an integrated transistor and resonant tunneling diode where the transistor comprises a substance 10, a buffer layer layer 12 over the substrate 10, and a channel layer 14 over the buffer 12; and the resonant tunneling diode (RTD) comprises a first contact layer 18, a first tunnel barrier layer 20 over the first contact layer 18, a quantum well 22 over the first tunnel barrier layer 20, a second tunnel barrier layer 24 over the quantum well 22, and a second contact layer 26 over the second tunnel barrier layer 24. Other devices and methods are also disclosed.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: May 16, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Edward A. Beam, III, Alan C. Seabaugh
  • Patent number: 5342804
    Abstract: A semiconductor device structure (10) includes similar devices (30), (32), and (34) having different operating characteristics. Each similar device is formed on a semiconductor substrate layer (14) through openings (16), (18), and (20) in a mask layer (12). Each opening (16), (18), and (20) has a different feature size and spacing that allows for various thickness levels of layers within the similar devices (30), (32), and (34) due to desorption from the mask layer (12). The growth rate within each opening (16), (18), and (20) is inversely proportional to the feature size of the respective opening.
    Type: Grant
    Filed: May 19, 1993
    Date of Patent: August 30, 1994
    Assignee: Texas Instruments Incorporated
    Inventor: Edward A. Beam, III