Patents by Inventor Edward-Bruce Baker

Edward-Bruce Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100039550
    Abstract: A bearing assembly suitable for use in a gimbal servo system is provided. The bearing assembly comprises a shaft having an end adapted to be coupled to a payload, a sleeve disposed over the shaft, an inner bearing rotatingly coupled to the shaft and the sleeve, an outer housing disposed over the sleeve, an outer bearing rotatingly coupled to the sleeve and the outer housing such that the sleeve is adapted to rotate about the shaft relative to the housing, a first motor operatively configured to rotate the shaft relative to the outer housing, and a second motor operatively configured to rotate the sleeve about the shaft. The second motor rotates the sleeve in a predetermined direction at a predetermined velocity such that a sum of the predetermined velocity and a velocity associated with inner bearing friction remains positive regardless of the direction of the shaft rotation.
    Type: Application
    Filed: November 9, 2007
    Publication date: February 18, 2010
    Applicant: DRS Sensors & Targeting Systems, Inc.
    Inventor: Edward Bruce Baker
  • Publication number: 20090296281
    Abstract: A bearing assembly suitable for use in a gimbal servo system is provided. The bearing assembly comprises a housing, a first shaft, a bearing rotatingly coupling the first shaft to the housing such that the first shaft is adapted to rotate about an axis relative to the housing, a second shaft having a first end adapted to be coupled to a payload, and a flex pivot element pivotally coupling an end of the first shaft to a second end of the second shaft such that the second shaft is adapted to rotate relative to the first shaft via the flex pivot element. In response to a rotation of the second shaft, the flex pivot element is adapted to pivot an angle about the first shaft axis. The pivot angle reflects a displacement of the second shaft relative to the first shaft and corresponds to a friction disturbance of the bearing.
    Type: Application
    Filed: November 9, 2007
    Publication date: December 3, 2009
    Applicant: DRS SENSORS & TARGETING SYSTEMS, INC.
    Inventor: Edward Bruce Baker
  • Patent number: 6733293
    Abstract: A reliable, cost effective motion simulator system wherein a motion platform controlled by three inexpensive fractional horsepower induction AC motors to provide n-axis of motion where n is two, three, four, five or six. A dynamic boost is applied to maintain the position of the motion platform at low speed or zero speed and to handle transient motion demands without use of an encoder. The personal simulator motion base includes a support structure for positioning a rider coupled to the motion platform. A support pedestal and a plurality of linkages support the motion platform. A plurality of motor assemblies 114 is coupled to the motion plate by the linkages. A control algorithm enables the use of low cost power electronics to drive the AC motor-linkage assemblies. The personal simulator may be controlled in response to user-initiated commands, remote-user initiated commands or by commands embedded in game software or the audio track of a video stream.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: May 11, 2004
    Assignee: Provision Entertainment, Inc.
    Inventors: Edward-Bruce Baker, Michael K. Forster, Jeffrey L. Vrachan, Curtis L. Thornton
  • Publication number: 20020115043
    Abstract: A reliable, cost effective motion simulator system wherein a motion platform controlled by three inexpensive fractional horsepower induction AC motors to provide n-axis of motion where n is two, three, four, five or six. A dynamic boost is applied to maintain the position of the motion platform at low speed or zero speed and to handle transient motion demands without use of an encoder. The personal simulator motion base includes a support structure for positioning a rider coupled to the motion platform. A support pedestal and a plurality of linkages support the motion platform. A plurality of motor assemblies 114 is coupled to the motion plate by the linkages. A control algorithm enables the use of low cost power electronics to drive the AC motor-linkage assemblies. The personal simulator may be controlled in response to user-initiated commands, remote-user initiated commands or by commands embedded in game software or the audio track of a video stream.
    Type: Application
    Filed: January 25, 2002
    Publication date: August 22, 2002
    Applicant: Provision Entertainment, Inc.
    Inventors: Edward-Bruce Baker, Michael K. Forster, Jeffrey L. Vrachan, Curtis L. Thornton