Patents by Inventor Edward Chow
Edward Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11953760Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: GrantFiled: August 25, 2022Date of Patent: April 9, 2024Inventor: Edward Chow
-
Publication number: 20230204977Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: ApplicationFiled: August 25, 2022Publication date: June 29, 2023Inventor: Edward CHOW
-
Patent number: 11460718Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: GrantFiled: March 23, 2020Date of Patent: October 4, 2022Inventor: Edward Chow
-
Patent number: 11044616Abstract: A self-organizing network switching matrix is provided. The self-organizing network switching matrix can receive a first set of communications data from a set of base transceiver stations wherein the communications data includes a radio simulcast. It can send the first set of communications data to a subset of remote transceiver units in a set of remote transceiver units. A second set of communications data can be received from the first subset of remote transceiver units. A set of network activity data can be generated based on monitoring the receiving of the second set of communications data from the first subset of remote transceiver units for a defined network activity. The subset of remote transceiver units can be adjusted based on the network activity data. In this regard, the self-organizing network switching matrix facilitates automated capacity management providing just in time network dimensioning.Type: GrantFiled: May 22, 2018Date of Patent: June 22, 2021Assignee: AT&T MOBILITY II LLCInventor: Gary Edward Chow
-
Publication number: 20200285073Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: ApplicationFiled: March 23, 2020Publication date: September 10, 2020Inventor: EDWARD CHOW
-
Patent number: 10752334Abstract: A collapsible unmanned aerial vehicle has: a cylindrical structural body; a plurality of deployable mechanisms laterally distributed about the cylindrical structural body; a control unit; a portable power source; each of the plurality of deployable mechanisms comprising a lift-generating device, a pliable pylon and an actuation mechanism, the cylindrical structural body being terminally mounted to the pliable pylon, the lift-generating device being terminally mounted to the pliable pylon, the actuation mechanism being operatively integrated along the pliable pylon, the pliable pylon being selectively configured to be radially straightened from the cylindrical structural body and to arcuately collapsed into the cylindrical structural body via the actuation mechanism, the control unit and the portable power source each being electrically connected to the actuation mechanism; the control unit and the portable power source being mounted within the cylindrical structural body; and the portable power source being eType: GrantFiled: October 2, 2017Date of Patent: August 25, 2020Inventor: Edward Chow
-
Patent number: 10598956Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: GrantFiled: May 24, 2018Date of Patent: March 24, 2020Inventor: Edward Chow
-
Patent number: 10484904Abstract: Automated control of simulcast ratios based on network traffic data provides efficient network capacity management. In one aspect, a remote switching matrix can be utilized at a venue to couple remote transceiver units (RTUs) with different antenna ports, for example, of one or more multi-beam antennas deployed at the venue. A simulcast ratio that can be utilized to support traffic demand at the venue can be determined and implemented by creating dynamic connections between the RTUs and the antenna ports. In one aspect, the simulcast ratio can be modified based on changes in network traffic at the venue that are monitored via self-organizing network devices. In addition, one or more antenna beams of the multi-beam antennas are remotely steered or rotated based on a location of the traffic.Type: GrantFiled: May 31, 2018Date of Patent: November 19, 2019Assignee: AT&T MOBILITY II LLCInventor: Gary Edward Chow
-
Publication number: 20180329227Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: ApplicationFiled: May 24, 2018Publication date: November 15, 2018Inventor: Edward Chow
-
Publication number: 20180279155Abstract: Automated control of simulcast ratios based on network traffic data provides efficient network capacity management. In one aspect, a remote switching matrix can be utilized at a venue to couple remote transceiver units (RTUs) with different antenna ports, for example, of one or more multi-beam antennas deployed at the venue. A simulcast ratio that can be utilized to support traffic demand at the venue can be determined and implemented by creating dynamic connections between the RTUs and the antenna ports. In one aspect, the simulcast ratio can be modified based on changes in network traffic at the venue that are monitored via self-organizing network devices. In addition, one or more antenna beams of the multi-beam antennas are remotely steered or rotated based on a location of the traffic.Type: ApplicationFiled: May 31, 2018Publication date: September 27, 2018Inventor: Gary Edward Chow
-
Publication number: 20180270674Abstract: A self-organizing network switching matrix is provided. The self-organizing network switching matrix can receive a first set of communications data from a set of base transceiver stations wherein the communications data includes a radio simulcast. It can send the first set of communications data to a subset of remote transceiver units in a set of remote transceiver units. A second set of communications data can be received from the first subset of remote transceiver units. A set of network activity data can be generated based on monitoring the receiving of the second set of communications data from the first subset of remote transceiver units for a defined network activity. The subset of remote transceiver units can be adjusted based on the network activity data. In this regard, the self-organizing network switching matrix facilitates automated capacity management providing just in time network dimensioning.Type: ApplicationFiled: May 22, 2018Publication date: September 20, 2018Inventor: Gary Edward Chow
-
Patent number: 10009778Abstract: A self-organizing network switching matrix is provided. The self-organizing network switching matrix can receive a first set of communications data from a set of base transceiver stations wherein the communications data includes a radio simulcast. It can send the first set of communications data to a subset of remote transceiver units in a set of remote transceiver units. A second set of communications data can be received from the first subset of remote transceiver units. A set of network activity data can be generated based on monitoring the receiving of the second set of communications data from the first subset of remote transceiver units for a defined network activity. The subset of remote transceiver units can be adjusted based on the network activity data. In this regard, the self-organizing network switching matrix facilitates automated capacity management providing just in time network dimensioning.Type: GrantFiled: May 27, 2016Date of Patent: June 26, 2018Assignee: AT&T Mobility II LLCInventor: Gary Edward Chow
-
Patent number: 10001660Abstract: Generating an aspheric contact lens design for facilitating myopia control of a cornea of a patient includes operations of: obtain measurement for degree refractive error of the eye in diopters; obtain measurement of one or more biomechanical properties of the cornea; define a diameter of a central zone of the contact lens based on pupil size; select a base curve profile and width for the central zone based on the refractive error and the one or more biomechanical properties; define a width of a reverse zone adjacent to and encircling the central zone, the width being greater than 0.Type: GrantFiled: February 24, 2017Date of Patent: June 19, 2018Inventor: Edward Chow
-
Patent number: 9998942Abstract: Automated control of simulcast ratios based on network traffic data provides efficient network capacity management. In one aspect, a remote switching matrix can be utilized at a venue to couple remote transceiver units (RTUs) with different antenna ports, for example, of one or more multi-beam antennas deployed at the venue. A simulcast ratio that can be utilized to support traffic demand at the venue can be determined and implemented by creating dynamic connections between the RTUs and the antenna ports. In one aspect, the simulcast ratio can be modified based on changes in network traffic at the venue that are monitored via self-organizing network devices. In addition, one or more antenna beams of the multi-beam antennas are remotely steered or rotated based on a location of the traffic.Type: GrantFiled: March 31, 2017Date of Patent: June 12, 2018Assignee: AT&T MOBILITY II LLCInventor: Gary Edward Chow
-
Publication number: 20180093753Abstract: A collapsible, rapidly-deployable unmanned aerial vehicle includes a cylindrical structural body, a plurality of deployable mechanisms, a control unit, and a portable power source. The cylindrical structural body is dimensioned to be stored in a small space and deployed rapidly. The plurality of deployable mechanisms includes a lift-generating device for generating an upward thrust that allows the unmanned aerial vehicle to fly. Further, the plurality of deployable mechanisms can collapse to reduce the overall footprint of the cylindrical structural body, thereby allowing the unmanned aerial vehicle to be stored in a confined area. The control unit is integrated into the cylindrical structural body, whereby the control unit controls the flight of the present invention. The portable power source provides electrical energy to the electrically operated components of the unmanned aerial vehicle such as the plurality of deployable mechanisms and the control unit.Type: ApplicationFiled: October 2, 2017Publication date: April 5, 2018Inventor: Edward Chow
-
Patent number: 9870457Abstract: Systems and methods for identifying and/or authenticating individuals utilizing microwave sensing modules are disclosed. A HEaRtbeat Microwave Authentication (HERMA) system can enable the active identification and/or authentication of a user by analyzing reflected RF signals that contain a person's unique characteristics related to their heartbeats. An illumination signal is transmitted towards a person where a reflected signal captures the motion of the skin and tissue (i.e. displacement) due to the person's heartbeats. The HERMA system can utilize existing transmitters in a mobile device (e.g. Wi-Fi, Bluetooth, Cellphone signals) as the illumination source with at least one external receive antenna. The received reflected signals can be pre-processed and analyzed to identify and/or authenticate a user.Type: GrantFiled: August 17, 2015Date of Patent: January 16, 2018Assignee: California Institute of TechnologyInventors: James Paul Lux, Edward Chow, Michael Ray McKee, Salman-ul Mohammed Haque, Andre Tkacenko
-
Publication number: 20170208496Abstract: Automated control of simulcast ratios based on network traffic data provides efficient network capacity management. In one aspect, a remote switching matrix can be utilized at a venue to couple remote transceiver units (RTUs) with different antenna ports, for example, of one or more multi-beam antennas deployed at the venue. A simulcast ratio that can be utilized to support traffic demand at the venue can be determined and implemented by creating dynamic connections between the RTUs and the antenna ports. In one aspect, the simulcast ratio can be modified based on changes in network traffic at the venue that are monitored via self-organizing network devices. In addition, one or more antenna beams of the multi-beam antennas are remotely steered or rotated based on a location of the traffic.Type: ApplicationFiled: March 31, 2017Publication date: July 20, 2017Inventor: Gary Edward Chow
-
Patent number: 9622274Abstract: Automated control of simulcast ratios based on network traffic data provides efficient network capacity management. In one aspect, a remote switching matrix can be utilized at a venue to couple remote transceiver units (RTUs) with different antenna ports, for example, of one or more multi-beam antennas deployed at the venue. A simulcast ratio that can be utilized to support traffic demand at the venue can be determined and implemented by creating dynamic connections between the RTUs and the antenna ports. In one aspect, the simulcast ratio can be modified based on changes in network traffic at the venue that are monitored via self-organizing network devices. In addition, one or more antenna beams of the multi-beam antennas are remotely steered or rotated based on a location of the traffic.Type: GrantFiled: April 29, 2016Date of Patent: April 11, 2017Assignee: AT&T MOBILITY II LLCInventor: Gary Edward Chow
-
Publication number: 20160277947Abstract: A self-organizing network switching matrix is provided. The self-organizing network switching matrix can receive a first set of communications data from a set of base transceiver stations wherein the communications data includes a radio simulcast. It can send the first set of communications data to a subset of remote transceiver units in a set of remote transceiver units. A second set of communications data can be received from the first subset of remote transceiver units. A set of network activity data can be generated based on monitoring the receiving of the second set of communications data from the first subset of remote transceiver units for a defined network activity. The subset of remote transceiver units can be adjusted based on the network activity data. In this regard, the self-organizing network switching matrix facilitates automated capacity management providing just in time network dimensioning.Type: ApplicationFiled: May 27, 2016Publication date: September 22, 2016Inventor: Gary Edward Chow
-
Publication number: 20160249392Abstract: Automated control of simulcast ratios based on network traffic data provides efficient network capacity management. In one aspect, a remote switching matrix can be utilized at a venue to couple remote transceiver units (RTUs) with different antenna ports, for example, of one or more multi-beam antennas deployed at the venue. A simulcast ratio that can be utilized to support traffic demand at the venue can be determined and implemented by creating dynamic connections between the RTUs and the antenna ports. In one aspect, the simulcast ratio can be modified based on changes in network traffic at the venue that are monitored via self-organizing network devices. In addition, one or more antenna beams of the multi-beam antennas are remotely steered or rotated based on a location of the traffic.Type: ApplicationFiled: April 29, 2016Publication date: August 25, 2016Inventor: Gary Edward Chow