Patents by Inventor Edward Damiano

Edward Damiano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10188795
    Abstract: Techniques are used for adaptation of drug-administration parameters that control insulin delivery in a blood glucose control system. One technique provides long-term adaptation of a nominal basal infusion rate, adapting to longer-term changes in a patient's needs due to growth, illness, hormonal fluctuations, physical activity, aging, etc. Another technique provides adaptation of priming dose size at mealtimes for overall better glycemic control and also adapting to longer-term changes in a patient's needs. Adaptation calculations use a receding-horizon window of recent values of the adapted parameter. Doses of a counter-regulatory agent (e.g., glucagon) may also be delivered in response to information about estimated accumulation of exogenously infused insulin (subcutaneously, intramuscularly, intraperitoneally, or intravenously) and/or the effect insulin might have on glucose levels (blood glucose concentration or interstitial fluid glucose concentration).
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: January 29, 2019
    Assignees: Trustees of Boston University, The General Hospital Corporation
    Inventors: Firas El-Khatib, Edward Damiano, Steven J. Russell
  • Patent number: 9833570
    Abstract: Techniques are used for adaptation of drug-administration parameters that control insulin delivery in a blood glucose control system. One technique provides long-term adaptation of a nominal basal infusion rate, adapting to longer-term changes in a patient's needs due to growth, illness, hormonal fluctuations, physical activity, aging, etc. Another technique provides adaptation of priming dose size at mealtimes for overall better glycemic control and also adapting to longer-term changes in a patient's needs. Adaptation calculations use a receding-horizon window of recent values of the adapted parameter. Doses of a counter-regulatory agent (e.g., glucagon) may also be delivered in response to information about estimated accumulation of exogenously infused insulin (subcutaneously, intramuscularly, intraperitoneally, or intravenously) and/or the effect insulin might have on glucose levels (blood glucose concentration or interstitial fluid glucose concentration).
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: December 5, 2017
    Assignee: Trustees of Boston University
    Inventors: Firas El-Khatib, Edward Damiano, Steven J. Russell
  • Publication number: 20170095612
    Abstract: Techniques are used for adaptation of drug-administration parameters that control insulin delivery in a blood glucose control system. One technique provides long-term adaptation of a nominal basal infusion rate, adapting to longer-term changes in a patient's needs due to growth, illness, hormonal fluctuations, physical activity, aging, etc. Another technique provides adaptation of priming dose size at mealtimes for overall better glycemic control and also adapting to longer-term changes in a patient's needs. Adaptation calculations use a receding-horizon window of recent values of the adapted parameter. Doses of a counter-regulatory agent (e.g., glucagon) may also be delivered in response to information about estimated accumulation of exogenously infused insulin (subcutaneously, intramuscularly, intraperitoneally, or intravenously) and/or the effect insulin might have on glucose levels (blood glucose concentration or interstitial fluid glucose concentration).
    Type: Application
    Filed: December 15, 2016
    Publication date: April 6, 2017
    Inventors: Firas El-Khatib, Edward Damiano, Steven J. Russell, M.D.
  • Publication number: 20130245547
    Abstract: Techniques are used for adaptation of drug-administration parameters that control insulin delivery in a blood glucose control system. One technique provides long-term adaptation of a nominal basal infusion rate, adapting to longer-term changes in a patient's needs due to growth, illness, hormonal fluctuations, physical activity, aging, etc. Another technique provides adaptation of priming dose size at mealtimes for overall better glycemic control and also adapting to longer-term changes in a patient's needs. Adaptation calculations use a receding-horizon window of recent values of the adapted parameter. Doses of a counter-regulatory agent (e.g., glucagon) may also be delivered in response to information about estimated accumulation of exogenously infused insulin (subcutaneously, intramuscularly, intraperitoneally, or intravenously) and/or the effect insulin might have on glucose levels (blood glucose concentration or interstitial fluid glucose concentration).
    Type: Application
    Filed: April 25, 2013
    Publication date: September 19, 2013
    Applicant: Trustees of Boston University
    Inventors: Firas El-Khatib, Edward Damiano
  • Patent number: 8273052
    Abstract: An augmented, adaptive algorithm utilizing model predictive control (MPC) is developed for closed-loop glucose control in type 1 diabetes. A linear empirical input-output subject model is used with an MPC algorithm to regulate blood glucose online, where the subject model is recursively adapted, and the control signal for delivery of insulin and a counter-regulatory agent such as glucagon is based solely on online glucose concentration measurements. The MPC signal is synthesized by optimizing an augmented objective function that minimizes local insulin accumulation in the subcutaneous depot and control signal aggressiveness, while simultaneously regulating glucose concentration to a preset reference set point. The mathematical formulation governing the subcutaneous accumulation of administered insulin is derived based on nominal temporal values pertaining to the pharmacokinetics (time-course of activity) of insulin in human, in terms of its absorption rate, peak absorption time, and overall time of action.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 25, 2012
    Assignee: Trustees of Boston University
    Inventors: Edward Damiano, Firas El-Khatib
  • Publication number: 20110106049
    Abstract: An augmented, adaptive algorithm utilizing model predictive control (MPC) is developed for closed-loop glucose control in type 1 diabetes. A linear empirical input-output subject model is used with an MPC algorithm to regulate blood glucose online, where the subject model is recursively adapted, and the control signal for delivery of insulin and a counter-regulatory agent such as glucagon is based solely on online glucose concentration measurements. The MPC signal is synthesized by optimizing an augmented objective function that minimizes local insulin accumulation in the subcutaneous depot and control signal aggressiveness, while simultaneously regulating glucose concentration to a preset reference set point. The mathematical formulation governing the subcutaneous accumulation of administered insulin is derived based on nominal temporal values pertaining to the pharmacokinetics (time-course of activity) of insulin in human, in terms of its absorption rate, peak absorption time, and overall time of action.
    Type: Application
    Filed: July 30, 2010
    Publication date: May 5, 2011
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Edward Damiano, Firas El-Khatib
  • Patent number: 7806854
    Abstract: An augmented, adaptive algorithm utilizing model predictive control (MPC) is developed for closed-loop glucose control in type 1 diabetes. A linear empirical input-output subject model is used with an MPC algorithm to regulate blood glucose online, where the subject model is recursively adapted, and the control signal for delivery of insulin and a counter-regulatory agent such as glucagon is based solely on online glucose concentration measurements. The MPC signal is synthesized by optimizing an augmented objective function that minimizes local insulin accumulation in the subcutaneous depot and control signal aggressiveness, while simultaneously regulating glucose concentration to a preset reference set point. The mathematical formulation governing the subcutaneous accumulation of administered insulin is derived based on nominal temporal values pertaining to the pharmacokinetics (timecourse of activity) of insulin in human, in terms of its absorption rate, peak absorption time, and overall time of action.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: October 5, 2010
    Assignees: Trustees of Boston University, The Board of Trustees of the University of Illinois
    Inventors: Edward Damiano, Firas El-Khatib
  • Publication number: 20080208113
    Abstract: An augmented, adaptive algorithm utilizing model predictive control (MPC) is developed for closed-loop glucose control in type 1 diabetes. A linear empirical input-output subject model is used with an MPC algorithm to regulate blood glucose online, where the subject model is recursively adapted, and the control signal for delivery of insulin and a counter-regulatory agent such as glucagon is based solely on online glucose concentration measurements. The MPC signal is synthesized by optimizing an augmented objective function that minimizes local insulin accumulation in the subcutaneous depot and control signal aggressiveness, while simultaneously regulating glucose concentration to a preset reference set point. The mathematical formulation governing the subcutaneous accumulation of administered insulin is derived based on nominal temporal values pertaining to the pharmacokinetics (timecourse of activity) of insulin in human, in terms of its absorption rate, peak absorption time, and overall time of action.
    Type: Application
    Filed: May 15, 2006
    Publication date: August 28, 2008
    Applicants: TRUSTEES OF BOSTON UNIVERSITY, The Board of Trustees of the University of Illinos
    Inventors: Edward Damiano, Firas El-Khatib