Patents by Inventor Edward F. Stephens

Edward F. Stephens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11543223
    Abstract: An ammunition cartridge including a case, an ignitable material within the case and an optical primer for igniting the ignitable material. The optical primer includes a conductive cylindrical cup electrically coupled to the case and a circular conductive button including a top button portion positioned in the cup and a bottom button portion extending through an opening in the cup, where the button and the cup are electrically isolated. The optical primer further includes a first bracket electrically coupled to the button, a second bracket electrically coupled to the cup, and a pair of laser diodes electrically coupled in a reverse parallel direction and being electrically coupled to the first and second brackets, where one of the laser diodes generates a laser beam that ignites the ignition material in response to a current flow in either direction through the case, the cup and the button.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: January 3, 2023
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Kevin L. Callan, Andrew M. Singleton, Ryan M. Crittenden, Michael L. Fisher, Wade Collins, Francis L. Struemph, Edward F. Stephens, IV
  • Publication number: 20220074725
    Abstract: An ammunition cartridge including a case, an ignitable material within the case and an optical primer for igniting the ignitable material. The optical primer includes a conductive cylindrical cup electrically coupled to the case and a circular conductive button including a top button portion positioned in the cup and a bottom button portion extending through an opening in the cup, where the button and the cup are electrically isolated. The optical primer further includes a first bracket electrically coupled to the button, a second bracket electrically coupled to the cup, and a pair of laser diodes electrically coupled in a reverse parallel direction and being electrically coupled to the first and second brackets, where one of the laser diodes generates a laser beam that ignites the ignition material in response to a current flow in either direction through the case, the cup and the button.
    Type: Application
    Filed: November 18, 2021
    Publication date: March 10, 2022
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: KEVIN L. CALLAN, ANDREW M. SINGLETON, RYAN M. CRITTENDEN, MICHAEL L. FISHER, WADE COLLINS, FRANCIS L. STRUEMPH, EDWARD F. STEPHENS, IV
  • Patent number: 11209257
    Abstract: An optical primer for igniting an ignition material in an ammunition cartridge. The primer includes a conductive cylindrical cup electrically coupled to a cartridge case and a circular conductive button including a top button portion positioned in the cup and a bottom button portion extending through an opening in the cup, where the button and the cup are electrically isolated. The primer further includes a first bracket electrically coupled to the button, a second bracket electrically coupled to the cup, and a pair of laser diodes electrically coupled in a reverse parallel direction and being electrically coupled to the first and second brackets, where one of the laser diodes generate a laser beam that ignites the ignition material in response to a current flow in either direction through the case, the cup and the button.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: December 28, 2021
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Kevin L. Callan, Andrew M. Singleton, Ryan M. Crittenden, Michael L. Fisher, Wade Collins, Francis L. Struemph, Edward F. Stephens, IV
  • Publication number: 20210278187
    Abstract: An optical primer for igniting an ignition material in an ammunition cartridge. The primer includes a conductive cylindrical cup electrically coupled to a cartridge case and a circular conductive button including a top button portion positioned in the cup and a bottom button portion extending through an opening in the cup, where the button and the cup are electrically isolated. The primer further includes a first bracket electrically coupled to the button, a second bracket electrically coupled to the cup, and a pair of laser diodes electrically coupled in a reverse parallel direction and being electrically coupled to the first and second brackets, where one of the laser diodes generate a laser beam that ignites the ignition material in response to a current flow in either direction through the case, the cup and the button.
    Type: Application
    Filed: December 12, 2019
    Publication date: September 9, 2021
    Inventors: KEVIN L. CALLAN, ANDREW M. SINGLETON, RYAN M. CRITTENDEN, MICHAEL L. FISHER, WADE COLLINS, FRANCIS L. STRUEMPH, EDWARD F. STEPHENS, IV
  • Publication number: 20170117683
    Abstract: A laser diode array having submounts allowing thermal transmission from laser diode bars to a heat exchanger while electrically isolating the laser diode bars from the heat exchanger. The laser diode array has a plurality of laser diode bars supported by a corresponding plurality of submounts. Each of the submounts has a submount core having a top surface, an opposite bottom surface and side surfaces. An electrically conductive layer covers part of one side surface. The conductive layer is in electrical contact with one of the laser diode bars. Another electrically conductive layer covers part of a second side surface. An electrical connector connects the electrically conductive layers on the side surfaces. The electrically conductive layers leave an exposed area of the side surfaces adjacent to the bottom surface. The heat exchanger is in thermal contact with the bottom surface of each of the submount cores.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 27, 2017
    Inventors: Jeremy Scott Junghans, Edward F. Stephens, IV, Courtney Ryan Feeler
  • Patent number: 9590388
    Abstract: A laser system that allows transverse arrangement of laser emitters around a laser medium. The system includes a laser medium with a coolant source and electrical controls. A pump layer has a mounting surface, an opposite bottom surface and a center aperture through which the laser medium is inserted. Laser diode emitters are disposed on the mounting surface circumferentially around the laser medium. An intermediate layer has at least one radial channel in fluid communication with the coolant conduit. The intermediate layer is in contact with the bottom surface. A middle layer has micro-channels formed therethrough and a center aperture. The micro-channels are radially arranged around the center aperture and the middle layer is in contact with the intermediate layer. The coolant source is fluidly coupled to the micro-channels to allow coolant to be directed through the microchannels and the radial channel to impinge on the bottom surface.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: March 7, 2017
    Assignee: Northrop Grumman Systems Corp.
    Inventors: Edward F. Stephens, IV, Courtney Ryan Feeler, Jeremy Scott Junghans
  • Patent number: 8518814
    Abstract: A method of fabricating a high-density laser diode stack is disclosed. The laser diode bars each have an emitter surface and opposing surfaces on either side of the emitter surface. Each laser diode bar has metallization layers on the opposing surfaces and a solder layer on at least one of the metallization layers. The solder layer is applied to a semiconductor wafer prior to cleaving the wafer to create the laser diode bars. The laser diode bars are arranged in a stack such that the emitter surfaces of the bars are facing the same direction. The stack of laser diode bars is placed in a vacuum chamber. An anti-reflection coating is deposited on the emitter surfaces of the laser diode bars in the chamber. The laser diode bars are joined by applying a temperature sufficient to reflow the solder layers in the chamber.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: August 27, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Edward F. Stephens, IV, Frank L. Struemph, Jeremy Scott Junghans
  • Publication number: 20130143338
    Abstract: A method of fabricating a high-density laser diode stack is disclosed. The laser diode bars each have an emitter surface and opposing surfaces on either side of the emitter surface. Each laser diode bar has metallization layers on the opposing surfaces and a solder layer on at least one of the metallization layers. The solder layer is applied to a semiconductor wafer prior to cleaving the wafer to create the laser diode bars. The laser diode bars are arranged in a stack such that the emitter surfaces of the bars are facing the same direction. The stack of laser diode bars is placed in a vacuum chamber. An anti-reflection coating is deposited on the emitter surfaces of the laser diode bars in the chamber. The laser diode bars are joined by applying a temperature sufficient to reflow the solder layers in the chamber.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicant: Northrop Grumman Systems Corp.
    Inventors: Edward F. Stephens, IV, Frank L. Struemph, Jeremy Scott Junghans
  • Patent number: 8345720
    Abstract: A laser diode package includes a laser diode, a cooler, and control circuitry, such as an integrated circuit. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets. The ceramic sheets are fused together. The ceramic sheets include traces or vias that provide electrically conductive paths to the integrated circuit. The control circuitry controls the output of the laser diode, e.g. the output at each of the laser diode's emitters. Multiple laser diode packages are placed together to form an array.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: January 1, 2013
    Assignee: Northrop Grumman Systems Corp.
    Inventors: Edward F. Stephens, IV, Courtney Ryan Feeler, Jeremy Scott Junghans
  • Publication number: 20120177073
    Abstract: A laser system that allows transverse arrangement of laser emitters around a laser medium. The system includes a laser medium with a coolant source such as a pump and electrical controls. A pump layer has a mounting surface, an opposite bottom surface and a center aperture through which the laser medium is inserted. A plurality of laser diode emitters are disposed on the mounting surface of the pump layer circumferentially around the laser medium. An intermediate layer has at least one radial channel in fluid communication with the coolant conduit of the pump layer. The intermediate layer is in contact with the bottom surface of the pump layer. A middle layer has a plurality of micro-channels formed therethrough and a center aperture. The micro-channels are radially arranged around the center aperture and the middle layer in contact with the intermediate layer.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 12, 2012
    Applicant: Northrop Grumman Systems Corp.
    Inventors: Edward F. Stephens, IV, Courtney Ryan Feeler, Jeremy Scott Junghans
  • Patent number: 7957439
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: June 7, 2011
    Assignee: Northrop Grumman Space & Missions
    Inventors: Edward F. Stephens, Steven M. Coleman
  • Publication number: 20110026551
    Abstract: A laser diode package includes a laser diode, a cooler, and control circuitry, such as an integrated circuit. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets. The ceramic sheets are fused together. The ceramic sheets include traces or vias that provide electrically conductive paths to the integrated circuit. The control circuitry controls the output of the laser diode, e.g. the output at each of the laser diode's emitters. Multiple laser diode packages are placed together to form an array.
    Type: Application
    Filed: July 22, 2010
    Publication date: February 3, 2011
    Applicant: Northrop Grumman Systems Corp.
    Inventors: Edward F. Stephens, IV, Courtney Ryan Feeler, Jeremy Scott Junghans
  • Patent number: 7860136
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Grant
    Filed: October 23, 2007
    Date of Patent: December 28, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Edward F. Stephens, IV, Joseph L Levy, John S. Whiteley
  • Patent number: 7724791
    Abstract: A laser diode package according to the present invention is composed of CTE mismatched components soldered together. The laser diode package includes a laser diode bar, at least one heat sink, and at least one exothermic layer. Solder layers are adjacent the heat sink(s) and laser diode bar, respectively. The exothermic layer(s) are positioned between the solder layers. The exothermic layer(s) are exposed to an energy source which causes an exothermic reaction to propagate through the exothermic layer thereby melting the solder layers and solder layers. The exothermic layer(s) may be designed to provide sufficient heat to melt the solder layers and solder layers but provide only minimal heat to the laser diode bar and heat sink(s). Several packages can be stacked together to form a laser diode array.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: May 25, 2010
    Assignee: Northrop Grumman Systems Corporation
    Inventor: Edward F. Stephens, IV
  • Publication number: 20100074285
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Application
    Filed: December 1, 2009
    Publication date: March 25, 2010
    Applicant: Northrop Grumman Space & Mission Systems Corp.
    Inventors: Edward F. Stephens, Steven M. Coleman
  • Patent number: 7656915
    Abstract: A laser diode package includes a laser diode, a cooler, and a metallization layer. The laser diode is used for converting electrical energy to optical energy. The cooler receives and routes a coolant from a cooling source via internal channels. The cooler includes a plurality of ceramic sheets and a highly thermally-conductive sheet. The ceramic sheets are fused together and the thermally-conductive sheet is attached to a top ceramic sheet of the plurality of ceramic sheets. The metallization layer has at least a portion on the thermally-conductive sheet. The portion is electrically coupled to the laser diode for conducting the electrical energy to the laser diode.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: February 2, 2010
    Assignee: Northrop Grumman Space & Missions Systems Corp.
    Inventors: Steven M. Coleman, Edward F. Stephens
  • Publication number: 20090185593
    Abstract: A laser diode package according to the present invention is composed of CTE mismatched components soldered together. The laser diode package includes a laser diode bar, at least one heat sink, and at least one exothermic layer. Solder layers are adjacent the heat sink(s) and laser diode bar, respectively. The exothermic layer(s) are positioned between the solder layers. The exothermic layer(s) are exposed to an energy source which causes an exothermic reaction to propagate through the exothermic layer thereby melting the solder layers and solder layers. The exothermic layer(s) may be designed to provide sufficient heat to melt the solder layers and solder layers but provide only minimal heat to the laser diode bar and heat sink(s). Several packages can be stacked together to form a laser diode array.
    Type: Application
    Filed: January 18, 2008
    Publication date: July 23, 2009
    Inventor: Edward F. Stephens, IV
  • Patent number: 7361978
    Abstract: A laser diode package includes a heat sink, a laser diode, and an electrically nonconductive (i.e. insulative) substrate. The laser diode has an emitting surface and a reflective surface opposing the emitting surface. The laser diode further has first and second side surfaces between the emitting and reflective surfaces. The heat sink has an upper surface and a lower surface. The first side surface of the laser diode is attached to the heat sink adjacent to the upper surface. The substrate is attached to the lower surface of the heat sink. The heat sink is made of heat conducting metal such as copper and the substrate is preferably made from gallium arsenide. The substrate is soldered to the heat sink as is the laser diode bar. Due to the presence of the substrate at the lower end of the heat sink, each individual laser diode package has its own electrical isolation. Several packages can be easily attached together to form a laser diode array.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: April 22, 2008
    Assignee: Northrop Gruman Corporation
    Inventor: Edward F. Stephens
  • Publication number: 20080056314
    Abstract: A system includes a laser-diode bar comprising an emitting surface and a reflective surface opposing the emitting surface. The laser-diode bar includes a positive-side surface and a negative-side surface opposing the positive-side surface for conducting electrical energy through laser-diode bar. The system also includes a heat sink thermally coupled to the laser-diode bar. The heat sink is made of a material selected from the group consisting of Skeleton-cemented diamond and diamond-copper composite. The system also includes a heat spreader interposed between the heat sink and the laser-diode bar. The heat spreader includes a first surface thermally interfacing the positive-side surface of the laser-diode bar. The first surface is substantially smoother than a surface on the heat sink and includes an electrically conductive material for conducting the electrical energy into the laser-diode bar.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 6, 2008
    Inventors: Steven M. Coleman, Edward F. Stephens
  • Patent number: 7330491
    Abstract: A laser diode package (10) according to the present invention is tolerant of short-circuit and open-circuit failures. The laser diode package (10) includes a laser diode bar (12), a forward-biased diode (14), a heat sink (18), and a lid (16) which may have fusible links (86). The laser diode bar (12) and the forward-biased diode (14) are electrically connected in parallel between the heat sink (18) and the lid (16). The emitting region of the laser diode bar (12) is aligned to emit radiation away from the forward-biased diode (14). Several packages can be stacked together to form a laser diode array (42). The forward-biased diode (14) allows current to pass through it when an open-circuit failure has occurred in the corresponding laser diode bar (12), thus preventing an open-circuit failure from completely disabling the array (42).
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: February 12, 2008
    Assignee: Northrop Grumman Space & Missions Systems Corporation
    Inventors: Edward F. Stephens, IV, Joseph L. Levy, John S. Whiteley