Patents by Inventor Edward Gobina

Edward Gobina has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8501151
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: August 6, 2013
    Assignee: The Robert Gordon University
    Inventors: Edward Gobina, Susanne Olsen
  • Patent number: 8273922
    Abstract: A process utilising the gases carbon monoxide, carbon dioxide and hydrogen to produce alcohols directly, comprises the steps of bringing a fluid mixture comprising carbon monoxide, carbon dioxide and hydrogen into contact with the surfaces of a supported tubular porous catalyst membrane having a range of pore sizes including micropores, mesopores and macropores, controlling the temperature of the said catalyst membrane, maintaining a pressure over said catalyst membrane of from 88 to 600 kPa, and recovering alcohol containing product formed by contact of the fluid mixture with said catalyst membrane.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: September 25, 2012
    Assignee: The Robert Gordon University
    Inventors: Edward Gobina, Reuben Mfon Umoh
  • Publication number: 20100217051
    Abstract: A process utilising the gases carbon monoxide, carbon dioxide and hydrogen to produce alcohols directly, comprises the steps of bringing a fluid mixture comprising carbon monoxide, carbon dioxide and hydrogen into contact with the surfaces of a supported tubular porous catalyst membrane having a range of pore sizes including micropores, mesopores and macropores, controlling the temperature of the said catalyst membrane, maintaining a pressure over said catalyst membrane of from 88 to 600 kPa, and recovering alcohol containing product formed by contact of the fluid mixture with said catalyst membrane.
    Type: Application
    Filed: September 19, 2008
    Publication date: August 26, 2010
    Applicant: THE ROBERT GORDON UNIVERSITY
    Inventors: Edward Gobina, Reuben Mfon Umoh
  • Publication number: 20100172809
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed.
    Type: Application
    Filed: November 18, 2009
    Publication date: July 8, 2010
    Applicant: Robert Gordon University
    Inventors: Edward Gobina, Susanne Olsen
  • Patent number: 7641888
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed. Normally gaseous hydrocarbons recovered from remote oil wells (e.g.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 5, 2010
    Assignee: Gas2 Limited
    Inventors: Edward Gobina, Susanne Olsen
  • Patent number: 7297184
    Abstract: An apparatus and method to separate a mixture of gases—such as carbon dioxide and methane—by an inorganic membrane comprising a ceramic support and a silica layer made from a silicon elastomer sol. The apparatus and method can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in e.g. hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: November 20, 2007
    Assignee: Robert Gordon University
    Inventor: Edward Gobina
  • Publication number: 20060239874
    Abstract: The present invention discloses a method, apparatus and method of manufacturing an apparatus; all to produce hydrogen gas, particularly synthesis gas. Preferred embodiments of the invention include an alpha alumina membrane which has been treated with a TiO2 wash coat on one side and has an active gamma alumina layer on an opposite side. A metal catalyst, preferably rhodium, is deposited within the pores of the alumina. Oxygen travels through the membrane and is activated before contacting methane on the other side of the membrane and forming synthesis gas through partial oxidation of the methane. Embodiments of the invention have a number of benefits including the high conversion rate of oxygen (100%), the separate feed streams of methane and oxygen which allow for optimal ratios to be used without danger of explosion, and the opportunity to vary the feed rates without changing the products formed. Normally gaseous hydrocarbons recovered from remote oil wells (e.g.
    Type: Application
    Filed: April 28, 2004
    Publication date: October 26, 2006
    Applicant: Robert Gordon University
    Inventors: Edward Gobina, Susanne Olsen
  • Publication number: 20060112822
    Abstract: An apparatus and method to separate a mixture of gases—such as carbon dioxide and methane—by an inorganic membrane comprising a ceramic support and a silica layer made from a silicon elastomer sol. The apparatus and method can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in e.g. hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.
    Type: Application
    Filed: January 10, 2006
    Publication date: June 1, 2006
    Applicant: Robert Gordon University
    Inventor: Edward Gobina
  • Patent number: 7048778
    Abstract: An apparatus and method to separate a mixture of gases, such as carbon dioxide and methane, by a ceramic membrane having a ceramic support and a silica layer. The invention can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in, e.g., hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: May 23, 2006
    Assignee: The Robert Gordon University
    Inventor: Edward Gobina
  • Publication number: 20040134347
    Abstract: An apparatus and method to separate a mixture of gases—such as carbon dioxide and methane—by means of an inorganic membrane comprising a ceramic support and a silica layer. The invention can efficiently separate the gaseous mixture and can also cope with the extreme conditions found in e.g. hydrocarbon producing wells. A method of manufacturing the apparatus is also disclosed.
    Type: Application
    Filed: September 10, 2003
    Publication date: July 15, 2004
    Inventor: Edward Gobina