Patents by Inventor Edward Godshalk

Edward Godshalk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230361445
    Abstract: A conductive assembly may include a deformable substrate disposed around an axis, and a deformable conductor arranged on the deformable substrate. The substrate may be arranged to form a channel along the axis, and the deformable conductor may be arranged on the deformable substrate to form a waveguide. The deformable substrate, the first deformable conductor, and a second deformable conductor may be arranged to form a microstrip or a coaxial transmission line. A deformable transmission line may include a deformable substrate arranged in a substantially enclosed channel around an axis, a first deformable conductor arranged in a trace along the axis of the deformable substrate, and a second deformable conductor arranged on the deformable substrate to form a reference conductor for the first deformable conductor. A method of fabricating a deformable conductive assembly may include forming a deformable conductor on a deformable substrate, and disposing the deformable substrate around an axis.
    Type: Application
    Filed: April 12, 2023
    Publication date: November 9, 2023
    Inventors: Mark Ronay, Edward Godshalk
  • Patent number: 11664565
    Abstract: A conductive assembly may include a deformable substrate disposed around an axis, and a deformable conductor arranged on the deformable substrate. The substrate may be arranged to form a channel along the axis, and the deformable conductor may be arranged on the deformable substrate to form a waveguide. The deformable substrate, the first deformable conductor, and a second deformable conductor may be arranged to form a microstrip or a coaxial transmission line. A deformable transmission line may include a deformable substrate arranged in a substantially enclosed channel around an axis, a first deformable conductor arranged in a trace along the axis of the deformable substrate, and a second deformable conductor arranged on the deformable substrate to form a reference conductor for the first deformable conductor. A method of fabricating a deformable conductive assembly may include forming a deformable conductor on a deformable substrate, and disposing the deformable substrate around an axis.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: May 30, 2023
    Assignee: Liquid Wire Inc.
    Inventors: Mark Ronay, Edward Godshalk
  • Publication number: 20200066628
    Abstract: A circuit assembly may include a substrate and a pattern of contact points formed from deformable conductive material supported by the substrate. The assembly may further include an electric component supported by the substrate and having terminals arranged in a pattern corresponding to the pattern of contacts points. The one or more of the terminals of the electric component may contact one or more of the corresponding contact points to form one or more electrical connections between the electric component and the contact points.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 27, 2020
    Applicant: Liquid Wire Inc.
    Inventors: Mark Ronay, Trevor Spiegel Antonio Rivera, Michael Adventure Hopkins, Edward Godshalk, Charles Kinzel
  • Publication number: 20070210077
    Abstract: A non-invasive microwave analysis method determines scattered phase and/or amplitude data for a liquid in a container. A transmitter antenna transmits microwaves that scatter from the container and the liquid in the container. One or more receiver antennas convert the microwaves into microwave electronic signals that are processed to determine the scattered phase and/or amplitude data. Another non-invasive microwave screening method includes placing a container of an unknown liquid in a tank. The container is separated by a membrane from coupling liquid in the tank. Microwave radiation transmits from a transmitter antenna and scatters from the container and the unknown liquid. One or more receiver antennas convert the microwave radiation into microwave electronic signals. The microwave electronic signals are processed to determine scattered phase and/or amplitude data. A pass result or a fail result is determined based on the scattered phase and/or amplitude data.
    Type: Application
    Filed: October 30, 2006
    Publication date: September 13, 2007
    Inventors: Edward Godshalk, Timothy Raynolds, Paul Meaney, Keith Paulsen, Greg Burke
  • Publication number: 20070039950
    Abstract: A non-invasive microwave analysis system determines scattered phase and/or amplitude data for a liquid in a container. A tank holds coupling liquid; the system includes a membrane for separating the liquid container from the coupling liquid. A transmitter antenna situated within the coupling liquid transmits microwaves. One or more receiver antennas within the coupling liquid convert microwave radiation that scatters from the liquid in the container into microwave electronic signals. Electronics process the microwave electronic signals to determine scattered phase and/or amplitude values of the microwave radiation.
    Type: Application
    Filed: October 30, 2006
    Publication date: February 22, 2007
    Inventors: Edward Godshalk, Timothy Raynolds, Paul Meaney, Keith Paulsen, Greg Burke
  • Publication number: 20050203387
    Abstract: Non-invasive microwave analysis systems and methods determine scattered phase data for a liquid in a container. A transmitter antenna situated within coupling liquid separated from the container by a flexible membrane transmits microwaves that scatter from the container and the liquid in the container. One or more receiver antennas within the coupling liquid convert the microwaves into microwave electronic signals that are processed to determine the scattered phase data. Non-invasive microwave analysis systems and methods image a portion of a biological subject. A transmitter antenna situated within coupling liquid separated from the subject by a flexible membrane transmits microwaves that scatter from the container and the subject. One or more receiver antennas within the coupling liquid convert the microwaves into microwave electronic signals that are processed to reconstruct a cross-sectional image of the subject.
    Type: Application
    Filed: March 15, 2005
    Publication date: September 15, 2005
    Inventors: Edward Godshalk, Timothy Raynolds, Paul Meaney, Keith Paulsen, Greg Burke