Patents by Inventor Edward Golubovsky

Edward Golubovsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240100713
    Abstract: Embodiments described herein generally relate to equipment used in the manufacturing of electronic devices, and more particularly, to a cleaning system, cleaning system hardware and related methods which may be used to transport and clean the surface of a substrate. According to one embodiment, a blade handling assembly for handling a substrate in a cleaning system includes a gripping assembly including a pair of gripping blades, the blades operable with a gripping actuator to hold a substrate at its edges. The assembly includes a first blade actuator for moving the gripping assembly and substrate between a horizontal and a vertical orientation utilizing a first axis. The assembly includes a second blade actuator for moving the vertically oriented gripping assembly and substrate 180 degrees utilizing a second axis, thereby causing the substrate to face an opposite direction.
    Type: Application
    Filed: September 11, 2023
    Publication date: March 28, 2024
    Inventors: Jagan RANGARAJAN, Edward GOLUBOVSKY, Edwin VELAZQUEZ, Adrian S. BLANK, Steven M. ZUNIGA, Balasubramaniam C. JAGANNATHAN
  • Publication number: 20240100714
    Abstract: Embodiments described herein generally relate to equipment used in the manufacturing of electronic devices, and more particularly, to a cleaning system, cleaning system hardware and related methods which may be used to transport and clean the surface of a substrate. According to one embodiment, a substrate cleaning unit may include a pre-clean chamber that performs a pre-clean process on a substrate with the substrate in a horizontal orientation. The unit may also include a first cleaning chamber that performs a first cleaning process on the substrate with the substrate in a vertical orientation. The unit may also include a second cleaning chamber. The unit may also include an integrated cleaning and drying chamber that performs a cleaning and drying process on the substrate in the horizontal orientation. A substrate handler may transfer the substrate between the chambers. The first and second cleaning chambers may be positioned below the pre-clean chamber.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 28, 2024
    Inventors: Jagan RANGARAJAN, Edward GOLUBOVSKY, Edwin VALAZQUEZ, Adrian S. BLANK, Steven M. ZUNIGA, Balasubramaniam C. JAGANNATHAN
  • Patent number: 11942319
    Abstract: A horizontal pre-clean module includes a chamber including a basin and a lid which collectively define a processing area, a rotatable vacuum table disposed in the processing area, a pad conditioning station, a pad carrier positioning arm having a first end and a second end distal from the first end, a pad carrier assembly coupled to the first end of the pad carrier positioning arm, and an actuator coupled to the second end of the pad carrier positioning arm and configured to swing the pad carrier assembly between a first position over the rotatable vacuum table and a second position over the pad conditioning station. The pad carrier assembly includes a gimbal base and a pad carrier coupled to the gimbal base, the gimbal base and the pad carrier are configured to support a buffing pad by a mechanical clamping mechanism and a suction clamping mechanism.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: March 26, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Edward Golubovsky, Jagan Rangarajan, Ekaterina Mikhaylichenko
  • Publication number: 20230352337
    Abstract: A wafer processing device may include a wafer exchanger including two or more blades, each of the two or more blades may be configured to receive a wafer, the two or more blades may be rotatable about an axis on a single horizontal plane, and the two or more blades may be movable between at least a load cup and a robot access location; wherein the load cup may include a wafer station that is vertically moveable relative a blade located in the load cup and may be configured to remove a wafer from a blade located in the load cup and place a wafer on a blade located in the load cup. Other devices, load cups and methods are also disclosed herein.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 2, 2023
    Inventors: Jagan Rangarajan, Edward Golubovsky, Shaun Van Der Veen, Justin Ho Kuen Wong, Steven M. Zuniga
  • Patent number: 11749552
    Abstract: A wafer processing device may include a wafer exchanger including two or more blades, each of the two or more blades may be configured to receive a wafer, the two or more blades may be rotatable about an axis on a single horizontal plane, and the two or more blades may be movable between at least a load cup and a robot access location; wherein the load cup may include a wafer station that is vertically moveable relative a blade located in the load cup and may be configured to remove a wafer from a blade located in the load cup and place a wafer on a blade located in the load cup. Other devices, load cups and methods are also disclosed herein.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: September 5, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jagan Rangarajan, Edward Golubovsky, Shaun Van Der Veen, Justin Ho Kuen Wong, Steven M. Zuniga
  • Publication number: 20230264319
    Abstract: A pad carrier assembly that includes a coupling base and a pad carrier coupled to the coupling base, the coupling base and the pad carrier are configured to support a buffing pad by a mechanical clamping mechanism. Embodiments of the present disclosure will provide a method of supporting a buffing pad in a horizontal pre-clean module. The method includes mechanically clamping or retaining a buffing pad on a peripheral edge of the buffing pad, wherein the coupling base and the pad carrier are coupled and disposed in a horizontal pre-clean module, and supporting the buffing pad and preventing the buffing pad from sagging, by use of one or more pad retaining features.
    Type: Application
    Filed: January 6, 2023
    Publication date: August 24, 2023
    Inventors: Edward GOLUBOVSKY, Clinton SAKATA, Jagan RANGARAJAN, Ekaterina A. MIKHAYLICHENKO
  • Patent number: 11721563
    Abstract: A cleaning module for cleaning a wafer comprises a wafer gripping device configured to support a wafer in a vertical orientation and comprises a catch cup and a gripper assembly. The catch cup comprises a wall that has an annular inner surface that defines a processing region and has an angled portion that is symmetric about a central axis of the wafer gripping device. The gripper assembly comprises a first plate assembly, a second plate assembly, a plurality of gripping pin, and a plurality of loading pin. The gripping pins are configured to grip a wafer during a cleaning process and the loading pins are configured to grip the wafer during a loading and unloading process. The cleaning module further comprises a sweep arm coupled to a nozzle mechanism configured to deliver liquids to the front and back side of the wafer.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: August 8, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Jagan Rangarajan, Adrian Blank, Edward Golubovsky, Balasubramaniam Coimbatore Jaganathan, Steven M. Zuniga, Ekaterina Mikhaylichenko, Michael A. Anderson, Jonathan P. Domin
  • Publication number: 20220199396
    Abstract: A horizontal pre-clean module includes a chamber including a basin and a lid which collectively define a processing area, a rotatable vacuum table disposed in the processing area, the rotatable vacuum table including a substrate receiving surface, a pad conditioning station disposed proximate to the rotatable vacuum table, a pad carrier positioning arm having a first end and a second end distal from the first end, a pad carrier assembly coupled to the first end of the pad carrier positioning arm, and an actuator coupled to the second end of the pad carrier positioning arm and configured to swing the pad carrier assembly between a first position over the rotatable vacuum table and a second position over the pad conditioning station. The pad carrier assembly includes a gimbal base and a pad carrier coupled to the gimbal base, the gimbal base and the pad carrier are configured to support a buffing pad by a mechanical clamping mechanism and a suction clamping mechanism.
    Type: Application
    Filed: October 26, 2021
    Publication date: June 23, 2022
    Inventors: Edward GOLUBOVSKY, Jagan RANGARAJAN, Ekaterina MIKHAYLICHENKO
  • Publication number: 20220134505
    Abstract: A horizontal pre-clean (HPC) module for a chemical mechanical polishing (CMP) processing system is disclosed. The HPC module includes a chamber having a basin and a lid which collectively define a processing area. The module includes a rotatable vacuum table disposed in the processing area, the rotatable vacuum table including an array of channels defined in a supporting surface thereof. The module includes a pad conditioning station disposed proximate to the rotatable vacuum table. The module includes a pad carrier positioning arm coupled to a pad carrier assembly. The module includes an actuator coupled to the pad carrier positioning arm and configured to position the pad carrier assembly between a first position over the rotatable vacuum table and a second position over the pad conditioning station.
    Type: Application
    Filed: October 25, 2021
    Publication date: May 5, 2022
    Inventors: Edward GOLUBOVSKY, Clinton SAKATA, Jagan RANGARAJAN, Ekaterina A. MIKHAYLICHENKO, Steven M. ZUNIGA
  • Patent number: 11289347
    Abstract: A cleaning module for cleaning a wafer comprises a wafer gripping device configured to support a wafer in a vertical orientation and comprises a catch cup and a gripper assembly. The catch cup comprises a wall that has an annular inner surface that defines a processing region and has an angled portion that is symmetric about a central axis of the wafer gripping device. The gripper assembly comprises a first plate assembly, a second plate assembly, a plurality of gripping pin, and a plurality of loading pin. The gripping pins are configured to grip a wafer during a cleaning process and the loading pins are configured to grip the wafer during a loading and unloading process. The cleaning module further comprises a sweep arm coupled to a nozzle mechanism configured to deliver liquids to the front and back side of the wafer.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: March 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jagan Rangarajan, Adrian Blank, Edward Golubovsky, Balasubramaniam Coimbatore Jaganathan, Steven M. Zuniga, Ekaterina Mikhaylichenko, Michael A. Anderson, Jonathan P. Domin
  • Publication number: 20220044946
    Abstract: A cleaning module for cleaning a wafer comprises a wafer gripping device configured to support a wafer in a vertical orientation and comprises a catch cup and a gripper assembly. The catch cup comprises a wall that has an annular inner surface that defines a processing region and has an angled portion that is symmetric about a central axis of the wafer gripping device. The gripper assembly comprises a first plate assembly, a second plate assembly, a plurality of gripping pin, and a plurality of loading pin. The gripping pins are configured to grip a wafer during a cleaning process and the loading pins are configured to grip the wafer during a loading and unloading process. The cleaning module further comprises a sweep arm coupled to a nozzle mechanism configured to deliver liquids to the front and back side of the wafer.
    Type: Application
    Filed: October 21, 2021
    Publication date: February 10, 2022
    Inventors: Jagan RANGARAJAN, Adrian BLANK, Edward GOLUBOVSKY, Balasubramaniam Coimbatore JAGANATHAN, Steven M. ZUNIGA, Ekaterina MIKHAYLICHENKO, Michael A. ANDERSON, Jonathan P. DOMIN
  • Patent number: 11158524
    Abstract: A cleaning module for cleaning a wafer comprises a wafer gripping device configured to support a wafer in a vertical orientation and comprises a catch cup and a gripper assembly. The catch cup comprises a wall that has an annular inner surface that defines a processing region and has an angled portion that is symmetric about a central axis of the wafer gripping device. The gripper assembly comprises a first plate assembly, a second plate assembly, a plurality of gripping pin, and a plurality of loading pin. The gripping pins are configured to grip a wafer during a cleaning process and the loading pins are configured to grip the wafer during a loading and unloading process. The cleaning module further comprises a sweep arm coupled to a nozzle mechanism configured to deliver liquids to the front and back side of the wafer.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: October 26, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Jagan Rangarajan, Adrian Blank, Edward Golubovsky, Balasubramaniam Coimbatore Jaganathan, Steven M. Zuniga, Ekaterina Mikhaylichenko, Michael A. Anderson, Jonathan P. Domin
  • Publication number: 20210323117
    Abstract: Embodiments herein include high throughput density chemical mechanical polishing (CMP) modules and customizable modular CMP systems formed thereof. In one embodiment, a polishing module features a carrier support module, a carrier loading station, and a polishing station. The carrier support module features a carrier platform and one or more carrier assemblies. The one or more carrier assemblies each comprise a corresponding carrier head suspended from the carrier platform. The carrier loading station is used to transfer substrates to and from the carrier heads. The polishing station comprises a polishing platen. The carrier support module, the substrate loading station, and the polishing station comprise a one-to-one-to-one relationship within each of the polishing modules. The carrier support module is positioned to move the one or more carrier assemblies between a substrate polishing position disposed above the polishing platen and a substrate transfer position disposed above the substrate loading station.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 21, 2021
    Inventors: Jagan RANGARAJAN, Edward GOLUBOVSKY, Jay GURUSAMY, Steven M. ZUNIGA
  • Publication number: 20210323119
    Abstract: Embodiments herein include high throughput density chemical mechanical polishing (CMP) modules and customizable modular CMP systems formed thereof. In one embodiment, a polishing module features a carrier support module, a carrier loading station, and a polishing station. The carrier support module features a carrier platform and one or more carrier assemblies. The one or more carrier assemblies each comprise a corresponding carrier head suspended from the carrier platform. The carrier loading station is used to transfer substrates to and from the carrier heads. The polishing station comprises a polishing platen. The carrier support module, the substrate loading station, and the polishing station comprise a one-to-one-to-one relationship within each of the polishing modules. The carrier support module is positioned to move the one or more carrier assemblies between a substrate polishing position disposed above the polishing platen and a substrate transfer position disposed above the substrate loading station.
    Type: Application
    Filed: October 21, 2020
    Publication date: October 21, 2021
    Inventors: Jagan RANGARAJAN, Edward GOLUBOVSKY, Jay GURUSAMY, Steven M. ZUNIGA
  • Publication number: 20210323118
    Abstract: Embodiments herein include high throughput density chemical mechanical polishing (CMP) modules and customizable modular CMP systems formed thereof. In one embodiment, a polishing module features a carrier support module, a carrier loading station, and a polishing station. The carrier support module features a carrier platform and one or more carrier assemblies. The one or more carrier assemblies each comprise a corresponding carrier head suspended from the carrier platform. The carrier loading station is used to transfer substrates to and from the carrier heads. The polishing station comprises a polishing platen. The carrier support module, the substrate loading station, and the polishing station comprise a one-to-one-to-one relationship within each of the polishing modules. The carrier support module is positioned to move the one or more carrier assemblies between a substrate polishing position disposed above the polishing platen and a substrate transfer position disposed above the substrate loading station.
    Type: Application
    Filed: May 11, 2020
    Publication date: October 21, 2021
    Inventors: Jagan RANGARAJAN, Edward GOLUBOVSKY, Jay GURUSAMY, Steven M. ZUNIGA
  • Publication number: 20200234995
    Abstract: A wafer processing device may include a wafer exchanger including two or more blades, each of the two or more blades may be configured to receive a wafer, the two or more blades may be rotatable about an axis on a single horizontal plane, and the two or more blades may be movable between at least a load cup and a robot access location; wherein the load cup may include a wafer station that is vertically moveable relative a blade located in the load cup and may be configured to remove a wafer from a blade located in the load cup and place a wafer on a blade located in the load cup. Other devices, load cups and methods are also disclosed herein.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 23, 2020
    Inventors: Jagan Rangarajan, Edward Golubovsky, Shaun Van Der Veen, Justin Ho Kuen Wong, Steven M. Zuniga
  • Publication number: 20200086453
    Abstract: Embodiments described herein relate to rotary unions for use in wafer cleaning processes. The rotary union includes a process media and a supporting media that interact in a gap between a nozzle and rotary element. By regulating the supporting media pressure, a non-contact seal is created within the gap. The non-contact seal prevents or controls process media leakage in a rotary union while enabling delivery of the process media through a platen directly underneath of a wafer without the risk of additional contamination of the process media, reducing the defect to the wafer. Additionally, the non-contact seal precludes particle generation due to seal wear, caused for example in face seals, and does not leech out any additional foreign elements.
    Type: Application
    Filed: August 16, 2019
    Publication date: March 19, 2020
    Inventor: Edward GOLUBOVSKY
  • Publication number: 20200043756
    Abstract: A cleaning module for cleaning a wafer comprises a wafer gripping device configured to support a wafer in a vertical orientation and comprises a catch cup and a gripper assembly. The catch cup comprises a wall that has an annular inner surface that defines a processing region and has an angled portion that is symmetric about a central axis of the wafer gripping device. The gripper assembly comprises a first plate assembly, a second plate assembly, a plurality of gripping pin, and a plurality of loading pin. The gripping pins are configured to grip a wafer during a cleaning process and the loading pins are configured to grip the wafer during a loading and unloading process. The cleaning module further comprises a sweep arm coupled to a nozzle mechanism configured to deliver liquids to the front and back side of the wafer.
    Type: Application
    Filed: August 6, 2019
    Publication date: February 6, 2020
    Inventors: Jagan RANGARAJAN, Adrian BLANK, Edward GOLUBOVSKY, Balasubramaniam Coimbatore JAGANATHAN, Steven M. ZUNIGA, Ekaterina MIKHAYLICHENKO, Michael A. ANDERSON, Jonathan P. DOMIN
  • Publication number: 20100130107
    Abstract: A method and apparatus for conditioning a polishing pad is described. The apparatus includes a base coupled to a platform, a first arm member having a first end coupled to the base, and a second arm member having a first end pivotably coupled to a second end of the first arm member and a conditioning disk coupled to a second end opposite the first end. The method includes rotating a polishing pad, urging a rotating conditioning disk against a polishing surface of the polishing pad, and moving the conditioning disk in a linear direction relative to the rotating polishing pad to perform a conditioning process.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 27, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Alpay Yilmaz, Edward Golubovsky, Jagan Rangarajan
  • Patent number: D947802
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: April 5, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Clinton Sakata, Edward Golubovsky