Patents by Inventor Edward H Aifer

Edward H Aifer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230238465
    Abstract: Photodiodes configured to convert incident photons in the short-wave infrared (SWIR) to electric current, where the photodiodes have a PbS/PbClx core/shell nanocrystal absorber layer. The PbClx shell in the PbS/PbClx nanocrystals provide native passivation in the (100) crystal facets and enable removal of pre-device processing ligands and ligand exchange on the (111) crystal facets of the PbS/PbClx nanocrystals such that the photodiode exhibits reduced current densities under reverse bias and greater infrared photoresponse, providing improved device performance as compared to photodiodes having absorber layers formed from PbS core nanocrystals alone.
    Type: Application
    Filed: December 1, 2022
    Publication date: July 27, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam E. Colbert, Diogenes Placencia, Janice E. Boercker, Edward H. Aifer, Joseph G. Tischler, Erin L. Ratcliff
  • Publication number: 20230178667
    Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.
    Type: Application
    Filed: August 2, 2022
    Publication date: June 8, 2023
    Inventors: Edward H. Aifer, Jerry R. Meyer, Chadwick Lawrence Canedy, Igor Vurgaftman, Jill A. Nolde
  • Patent number: 11404591
    Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: August 2, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Edward H. Aifer, Jerry R. Meyer, Chadwick Lawrence Canedy, Igor Vurgaftman, Jill A. Nolde
  • Patent number: 10644114
    Abstract: A device including an absorber layer that can be deposited on top of a bottom contact layer. Furthermore, a semi-intrinsic layer with an energy gap wider than that of the absorber layer can be deposited on top of the absorber layer. A top contact layer can be deposited on top of the semi-intrinsic layer. A conduction band and a valence band energy alignment can be positioned between the absorber layer and the top contact layer, and configured to allow photoexcited minority carriers to be collected while the flow of majority carriers from the absorber are blocked. At least one mesa can be formed by processing and removing layered materials to a depth at least near the bottom of the absorber layer. Finally, a shoulder can be formed in the at least one mesa within the semi-intrinsic layer by processing and removing the layered materials.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: May 5, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Edward H. Aifer, Igor Vurgaftman, Jill A. Nolde, Eric M. Jackson, Jerry R. Meyer
  • Publication number: 20200035846
    Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.
    Type: Application
    Filed: July 29, 2019
    Publication date: January 30, 2020
    Inventors: Edward H. Aifer, Jerry R. Meyer
  • Patent number: 9305122
    Abstract: A computationally efficient method for building a superlattice structure that improves an optoelectronic device performance characteristic that depends on fundamental superlattice material properties such as absorption coefficient ?(?), radiative efficiency Rsp and/or electron density n.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: April 5, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Igor Vurgaftman, Jerry R. Meyer, Chaffra Affouda, Matthew P. Lumb, Edward H. Aifer
  • Patent number: 8685273
    Abstract: This disclosure involves a formula, mixing procedure, etching technique and application of an etchant for revealing defects in T2SL's grown lattice matched to (100) GaSb. The etching agent comprises a (2.5:4.5:16.5:280) solution by volume or (1%:2%:9%:88%) by weight, of HF:H2O2:H2SO4:H2O. The etchant is made by mixing (49%) hydrofluoric aqueous solution with (30%) water-based peroxide, followed by sulfuric acid, and diluted with de-ionized H2O (DI-water).
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: April 1, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Edward H Aifer, Sergey I Maximenko
  • Publication number: 20130122715
    Abstract: This disclosure involves a formula, mixing procedure, etching technique and application of an etchant for revealing defects in T2SL's grown lattice matched to (100) GaSb. The etching agent comprises a (2.5:4.5:16.5:280) solution by volume or (1%:2%:9%:88%) by weight, of HF:H2O2:H2SO4:H2O. The etchant is made by mixing (49%) hydrofluoric aqueous solution with (30%) water-based peroxide, followed by sulfuric acid, and diluted with de-ionized H2O (DI-water).
    Type: Application
    Filed: November 6, 2012
    Publication date: May 16, 2013
    Inventors: Edward H Aifer, Sergey I. Maximenko