Patents by Inventor Edward J. Doherty

Edward J. Doherty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240108709
    Abstract: The present invention provides vaccine compositions and methods of producing such compositions. Other embodiments of the invention include methods of treating a pathogen infection, methods of vaccinating a subject against a pathogen infection, and methods for treating an antibiotic-resistance bacterial infection in a subject in need thereof. In further embodiments, the invention includes methods of decreasing the level of a pathogen in a subject having a pathogen infection, methods of increasing the surviving rate of a subject having a pathogen infection, methods of reducing the level of pain associated with a pathogen infection, and methods of reducing the level of distress associated with a pathogen infection in a subject in need thereof. Novel scaffold compositions and opsonin-bound or lectin-bound pathogen compositions, and uses thereof, are also provided herein.
    Type: Application
    Filed: March 20, 2023
    Publication date: April 4, 2024
    Applicant: President and Fellows of Harvard College
    Inventors: Michael Super, Edward J. Doherty, Mark Joseph Cartwright, Des White, Alexander Stafford, Omar Abdel-Rahman Ali, Amanda Graveline, Donald E. Ingber, David J. Mooney, Benjamin Seiler
  • Patent number: 11638748
    Abstract: The present invention provides vaccine compositions and methods of producing such compositions. Other embodiments of the invention include methods of treating a pathogen infection, methods of vaccinating a subject against a pathogen infection, and methods for treating an antibiotic-resistance bacterial infection in a subject in need thereof. In further embodiments, the invention includes methods of decreasing the level of a pathogen in a subject having a pathogen infection, methods of increasing the surviving rate of a subject having a pathogen infection, methods of reducing the level of pain associated with a pathogen infection, and methods of reducing the level of distress associated with a pathogen infection in a subject in need thereof. Novel scaffold compositions and opsonin-bound or lectin-bound pathogen compositions, and uses thereof, are also provided herein.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: May 2, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Michael Super, Edward J. Doherty, Mark Joseph Cartwright, Des White, Alexander Stafford, Omar Abdel-Rahman Ali, Amanda Graveline, Donald E. Ingber, David J. Mooney, Benjamin Seiler
  • Publication number: 20210170007
    Abstract: The present invention provides vaccine compositions and methods of producing such compositions. Other embodiments of the invention include methods of treating a pathogen infection, methods of vaccinating a subject against a pathogen infection, and methods for treating an antibiotic-resistance bacterial infection in a subject in need thereof. In further embodiments, the invention includes methods of decreasing the level of a pathogen in a subject having a pathogen infection, methods of increasing the surviving rate of a subject having a pathogen infection, methods of reducing the level of pain associated with a pathogen infection, and methods of reducing the level of distress associated with a pathogen infection in a subject in need thereof. Novel scaffold compositions and opsonin-bound or lectin-bound pathogen compositions, and uses thereof, are also provided herein.
    Type: Application
    Filed: September 9, 2020
    Publication date: June 10, 2021
    Inventors: Michael Super, Edward J. Doherty, Mark Joseph Cartwright, Des White, Alexander Stafford, Omar Abdel-Rahman Ali, Amanda Graveline, Donald E. Ingber, David J. Mooney, Benjamin Seiler
  • Patent number: 10813988
    Abstract: The present invention provides vaccine compositions and methods of producing such compositions. Other embodiments of the invention include methods of treating a pathogen infection, methods of vaccinating a subject against a pathogen infection, and methods for treating an antibiotic-resistance bacterial infection in a subject in need thereof. In further embodiments, the invention includes methods of decreasing the level of a pathogen in a subject having a pathogen infection, methods of increasing the surviving rate of a subject having a pathogen infection, methods of reducing the level of pain associated with a pathogen infection, and methods of reducing the level of distress associated with a pathogen infection in a subject in need thereof. Novel scaffold compositions and opsonin-bound or lectin-bound pathogen compositions, and uses thereof, are also provided herein.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 27, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Michael Super, Edward J. Doherty, Mark Cartwright, Des White, Alexander G. Stafford, Omar Abdel-Rahman Ali, Amanda Graveline, Donald E. Ingber, David J. Mooney, Benjamin Seiler
  • Publication number: 20170246281
    Abstract: The present invention provides vaccine compositions and methods of producing such compositions. Other embodiments of the invention include methods of treating a pathogen infection, methods of vaccinating a subject against a pathogen infection, and methods for treating an antibiotic-resistance bacterial infection in a subject in need thereof. In further embodiments, the invention includes methods of decreasing the level of a pathogen in a subject having a pathogen infection, methods of increasing the surviving rate of a subject having a pathogen infection, methods of reducing the level of pain associated with a pathogen infection, and methods of reducing the level of distress associated with a pathogen infection in a subject in need thereof. Novel scaffold compositions and opsonin-bound or lectin-bound pathogen compositions, and uses thereof, are also provided herein.
    Type: Application
    Filed: February 16, 2017
    Publication date: August 31, 2017
    Inventors: Michael Super, Edward J. Doherty, Mark Cartwright, Des White, Alexander G. Stafford, Omar Abdel-Rahman Ali, Amanda Graveline, Donald E. Ingber, David J. Mooney, Benjamin Seiler
  • Publication number: 20080262581
    Abstract: An apparatus to monitor current density in the application of medicament to a treatment site of a mammalian user of a electrokinetic device including: an applicator cartridge including an active electrode, a matrix carrying a medicament or a medicament and an electrically conductive carrier; a device including an electrical power source connectable to the active electrode, a counter electrode, and an electronic circuit configured to control the application of electrical current through the active electrode to establish a conductive path extending from the power source, through the active electrode, matrix, the treatment site, the user and the counter electrode electrically connected to the power source, and an array of contacts monitoring current density flowing through the matrix and to the treatment site, wherein the array of sensors are arranged monitor the current density at various locations of the matrix and a contact area between the matrix and skin above the treatment site.
    Type: Application
    Filed: April 17, 2008
    Publication date: October 23, 2008
    Applicant: Transport Pharmaceuticals, Inc.
    Inventors: Michael S. Barsness, Edward J. Doherty
  • Publication number: 20020187182
    Abstract: A porous, water-absorbing fleece is made from crosslinkable biocompatible and biodegradable macromers. A solution of the macromers is frozen and vacuum-dried through lyophilization. The “fleece” formed by lyophilization is then crosslinked, for example by heat and/or an initiator of crosslinking. The resulting crosslinked material is highly water absorbent, readily swelling to at least its size before lyophilization, but retains macroporosity as well as the microporosity of a gel. Porosity and strength of the fleece can be controlled by initial polymer concentration and extent of crosslinking. The fleece materials can be used in different embodiments for applications in medicine and tissue engineering.
    Type: Application
    Filed: February 14, 2002
    Publication date: December 12, 2002
    Applicant: Genzyme Corporation
    Inventors: Hildegard M. Kramer, Luis Z. Avila, C. Michael Philbrook, Peter K. Jarrett, Barbara A. Huibregtse, Liesbeth M.E. Brown, Kenneth A. Messier, Michael J. Bassett, Edward J. Doherty, John A. Traverse
  • Patent number: 6337088
    Abstract: A method for determining the viral retentivity of an external jacket of an implantable permselective macrocapsule. Viral retentivity describes the ability of an external jacket to retard the transport of virus particles across the jacket.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 8, 2002
    Assignee: Neurotech S.A.
    Inventors: Frank T. Gentile, Patrick A. Tresco, Tyrone Hazlett, Thomas Flanagan, Edward J. Doherty, David Rein, Laura M. Holland
  • Publication number: 20010043923
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Application
    Filed: March 7, 2001
    Publication date: November 22, 2001
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 6123700
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: September 26, 2000
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5955095
    Abstract: Microporous macrocapsules are disclosed which are useful as implantation devices for cell therapy. The macrocapsule comprises living cells that secrete biological substance that are therapeutically useful and that are released from the macrocapsule to the site of implantation. The capsules can have selected permeability characteristics based upon their particular usage and desired viral retentivity characteristics.
    Type: Grant
    Filed: August 14, 1995
    Date of Patent: September 21, 1999
    Assignee: Brown University Research Foundation
    Inventors: Frank T. Gentile, Tyrone Hazlett, Patrick A. Tresco, Thomas Flanagan, Edward J. Doherty, David Rein, Laura M. Holland
  • Patent number: 5935849
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: August 10, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5932460
    Abstract: A sealed, implantable, encapsulation device (20) for diffusing a biologically active product or function to an individual which includes a substantially non-porous fitting (32) including an inner surface (33) defining an access port (34). A permselective, porous, membrane (21), having an interior surface (22), cooperates with the fitting inner surface (33) to form a storage cavity (23) therebetween. The membrane interior surface (22) is in substantially cell-tight dry sealing engagement with fitting (32) to seal cavity (23). Living cells (24) are disposed in the cavity (23) which are capable of secreting the biologically active product to an individual. The membrane (21) is of a material capable of permitting the passage of substances between the individual and cells required to provide the biological product or function. A plug member (35) is positioned in the access port (34) and seated in cell-tight sealing engagement with the fitting inner surface (33).
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 3, 1999
    Assignee: Brown University Research Foundation
    Inventors: John F. Mills, Edward J. Doherty, Tyrone F. Hazlett, Keith E. Dionne, Nicholas F. Warner, Brian M. Cain, David H. Rein
  • Patent number: 5858747
    Abstract: Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination. The bioartificial organ typically has a semipermeable membrane encapsulating a cell-containing core, and is preferably immunoisolatory.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: January 12, 1999
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5853717
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: December 29, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5843431
    Abstract: Methods and compositions are provided for controlling cell distribution within an implantable bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: December 1, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5840576
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 24, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5833979
    Abstract: This invention relates to methods and compositions of controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the BAO with ECM molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: November 10, 1998
    Assignee: CytoTherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5795790
    Abstract: Methods and compositions are provided for controlling cell distribution within a bioartificial organ by exposing the cells to a treatment that inhibits cell proliferation, promotes cell differentiation, or affects cell attachment to a growth surface within the bioartificial organ. Such treatments include (1) genetically manipulating cells, (2) exposing the cells to a proliferation-inhibiting compound or a differentiation-inducing compound or removing the cells from exposure to a proliferation-stimulating compound or a differentiation-inhibiting compound; exposing the cells to irradiation, and (3) modifying a growth surface of the bioartificial organ with extracellular matrix molecules, molecules affecting cell proliferation or adhesion, or an inert scaffold, or a combination thereof. These treatments may be used in combination.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: August 18, 1998
    Assignee: Cytotherapeutics, Inc.
    Inventors: Malcolm Schinstine, Molly S. Shoichet, Frank T. Gentile, Joseph P. Hammang, Laura M. Holland, Brian M. Cain, Edward J. Doherty, Shelley R. Winn, Patrick Aebischer
  • Patent number: 5786216
    Abstract: A biocompatible capsule for containing cells for implantation is prepared containing an inner support that provides tensile strength to the capsule. The capsule may be a tubular semipermeable membrane such as a hollow fiber membrane having both ends sealed. A rod shaped inner support extends through the lumen and ends of the rod are attached to sealed ends of the fiber. Prior to sealing one fiber end, cells are introduced into the lumen. Cells within the capsule may be suspended in a liquid medium or immobilized in a hydrogel or extracellular matrix material, and biologically active molecules can be delivered from the capsule to surroundings or from the surroundings into the capsule. The inner support may have external features such as flutes or a roughened or irregularly-shaped surface, and may be coated with cell-adhesive substance or a cell-viability-enhancing substance.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: July 28, 1998
    Assignee: Cytotherapeutics, Inc.
    Inventors: Keith E. Dionne, Orion D. Hegre, Thomas R. Flanagan, Tyrone F. Hazlett, Edward J. Doherty