Patents by Inventor Edward J. Rode

Edward J. Rode has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11280008
    Abstract: An electrochemical electrode comprising a tin-based catalyst, method of making, and method of use are provided. Catalyst particles are prepared which comprise tin deposits of about 0.1 nm to about 10 nm deposited onto carbon support. Preparing an ink comprising the catalyst particles and a binder enable an electrode to be prepared comprising the catalyst particles bound to an electrode substrate. The electrode may then be used in an apparatus and process to reduce carbon dioxide to products such as formate and formic acid at Faradaic Efficiencies up to 95 percent.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: March 22, 2022
    Assignee: DNV GL AS
    Inventors: Arun S. Agarwal, Edward J. Rode, Dushyant Gautam
  • Publication number: 20190256989
    Abstract: An electrochemical electrode comprising a tin-based catalyst, method of making, and method of use are provided. Catalyst particles are prepared which comprise tin deposits of about 0.1 nm to about 10 nm deposited onto carbon support. Preparing an ink comprising the catalyst particles and a binder enable an electrode to be prepared comprising the catalyst particles bound to an electrode substrate. The electrode may then be used in an apparatus and process to reduce carbon dioxide to products such as formate and formic acid at Faradaic Efficiencies up to 95 percent.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 22, 2019
    Applicant: DNV GL AS
    Inventors: Arun S. Agarwal, Edward J. Rode, Dushyant Gautam
  • Patent number: 8545608
    Abstract: Embodiments of crystalline, titanium silicate molecular sieves are described having a formula representing mole ratios of oxides of nM1O:TiO2:ySiO2:zH2O:wX where M1 refers to a metal cation or mixture of metal cations; n is from about 1 to about 2; y is from about 1 to about 10; z is from 0 to about 100; X is a halide anion other than fluorine, or combination of halide anions that excludes fluorine; and w is greater than 0. The pore size of the sieves can be adjusted by ion exchanging M1 cations with a suitable amount of another species. Embodiments of the invention are useful for various adsorptive fluid separation processes, including pressure swing adsorption processes. For example, disclosed embodiments are useful for separating methane from air.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: October 1, 2013
    Assignee: The Governors of the University of Alberta
    Inventors: James A. Sawada, Edward J. Rode, Steven M. Kuznicki, Christopher Chih Itao Lin
  • Publication number: 20130014644
    Abstract: Embodiments of crystalline, titanium silicate molecular sieves are described having a formula representing mole ratios of oxides of nM1O:TiO2:ySiO2:zH2O:wX where M1 refers to a metal cation or mixture of metal cations; n is from about 1 to about 2; y is from about 1 to about 10; z is from 0 to about 100; X is a halide anion other than fluorine, or combination of halide anions that excludes fluorine; and w is greater than 0. The pore size of the sieves can be adjusted by ion exchanging M1 cations with a suitable amount of another species. Embodiments of the invention are useful for various adsorptive fluid separation processes, including pressure swing adsorption processes. For example, disclosed embodiments are useful for separating methane from air.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 17, 2013
    Inventors: James A. Sawada, Edward J. Rode, Steven M. KUZNICKI, Christopher Chih Itao Lin
  • Patent number: 7828877
    Abstract: An inventive adsorptive gas separation process is provided capable of producing a purified methane product gas as a light non-adsorbed product gas as opposed to a heavy desorbed exhaust gas component, from a feed gas mixture comprising at least methane, and carbon dioxide. In an embodiment of the invention, the feed gas mixture may comprise at least about 10% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide. In another embodiment of the invention, the feed gas mixture may comprise at least about 50% carbon dioxide, and the purified methane product gas may be desirably purified to contain less than about 5000 ppm carbon dioxide.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: November 9, 2010
    Assignee: Xebec Adsorption, Inc.
    Inventors: James A. Sawada, Matthew L. Babicki, Amy Chiu, Andre Boulet, Surajit Roy, Edward J. Rode
  • Publication number: 20100269694
    Abstract: Embodiments of crystalline, titanium silicate molecular sieves are described having a formula representing mole ratios of oxides of n M1O:TiO2:y SiO2:zH2O:wX where Mi refers to a metal cation or mixture of metal cations; n is from about 1 to about 2; y is from about 1 to about 10; z is from 0 to about 100; X is a halide anion other than fluorine, or combination of halide anions that excludes fluorine; and w is greater than 0. The pore size of the sieves can be adjusted by ion exchanging Mi cations with a suitable amount of another species. Embodiments of the invention are useful for various adsorptive fluid separation processes, including pressure swing adsorption processes. For example, disclosed embodiments are useful for separating methane from air.
    Type: Application
    Filed: June 22, 2007
    Publication date: October 28, 2010
    Applicant: The Governors of the University of Alberta
    Inventors: James A. Sawada, Edward J. Rode, Steven M. Kuznicki, Christopher Chih Hao Lin
  • Patent number: 7645324
    Abstract: Improved adsorbent sheet based parallel passage adsorbent structures for enhancing the kinetic selectivity of certain kinetic-controlled adsorption processes, such as PSA, TSA and PPSA processes, and combinations thereof, are provided. The enhancements in kinetic selectivity made possible through the implementation of the present inventive improved adsorbent structures may unexpectedly enable significant intensification of selected kinetic adsorption processes relative to attainable performance with conventional adsorbent materials in beaded or extruded form. Such process intensification enabled by the present inventive adsorbent structures may provide for increased adsorption cycle frequencies, and increased gas flow velocities within the adsorbent beds, which may increase the productivity and/or recovery of a kinetic adsorption system incorporating the inventive adsorbent structures.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: January 12, 2010
    Assignee: Xebec Adsorption Inc.
    Inventors: Edward J. Rode, Andre J. J. Boulet, Aaron M. Pelman, Matthew L. Babicki, Bowie G. Keefer, James A. Sawada, Soheil Alizadeh-Khiavi, Surajit Roy, Andrea C. Gibbs, Steven M. Kuznicki
  • Patent number: 6530975
    Abstract: A molecular sieve adsorbent for the purification of gas streams containing water vapor and carbon dioxide. The adsorbent is a combination of sodium form of a low-silica faujasite, having a residual content of potassium ions less than about 8.0 percent (equiv.), a low content of crystalline and amorphous admixtures and crystal sizes generally within the range of 1-4 &mgr;m, and a binder. A process for the adsorbent preparation which comprises specific parameters of low silica faujasite synthesis, sodium-potassium ion exchange, blending and granulation.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: March 11, 2003
    Assignee: Zeochem
    Inventors: Edward J. Rode, Albert M. Tsybulevskiy
  • Publication number: 20020009404
    Abstract: An adsorbent-catalyst for removal of sulphur compounds from sulfur compound contaminated gas and liquid feed streams, wherein the adsorbent-catalyst is a synthetic X or Y faujasite with a silica to alumina ratio from 1.8:1 to about 5:1 and wherein 40 to 90% of the cations of the faujasite include transition metals of Groups IB, IIB and VIIB with the balance of the cations being alkali or alkaline earth metals.
    Type: Application
    Filed: July 18, 2001
    Publication date: January 24, 2002
    Applicant: Zeochem LLC
    Inventors: Albert M. Tsybulevskiy, Edward J. Rode
  • Publication number: 20010049998
    Abstract: A molecular sieve adsorbent for the purification of gas streams containing water vapor and carbon dioxide. The adsorbent is a combination of sodium form of a low-silica faujasite, having a residual content of potassium ions less than about 8.0 percent (equiv.), a low content of crystalline and amorphous admixtures and crystal sizes generally within the range of 1-4 &mgr;m, and a binder.
    Type: Application
    Filed: January 19, 2001
    Publication date: December 13, 2001
    Applicant: ZEOCHEM
    Inventors: Edward J. Rode, Albert M. Tsybulevskiy
  • Patent number: 6183539
    Abstract: A molecular sieve adsorbent for the purification of gas streams containing water vapor and carbon dioxide and a process for its preparation. The adsorbent is a sodium form of a low-silica faujasite having a silica to alumina ratio of about 1.8:1 to about 2.2:1, a residual content of potassium ions less than about 8.0 percent (equiv.), a low content of crystalline and amorphous admixtures and crystal sizes generally within the range of 1-4 &mgr;m, blended with a binder.
    Type: Grant
    Filed: July 1, 1998
    Date of Patent: February 6, 2001
    Assignee: Zeochem Co.
    Inventors: Edward J. Rode, Albert M. Tsybulevskiy
  • Patent number: 6096194
    Abstract: An adsorbent for organic sulfur compound removal from mineral, vegetable or animal oils useful to protect a hydrogenation catalyst against poisoning, wherein the adsorbent is a zinc-exchanged form of low silica faujasite with a silica to alumina ratio from about 1.8 to about 2.1, wherein the adsorbent contains an inequivalent excess of zinc cations from about 8 to about 20% (equiv.) and a process for manufacture and use of the adsorbent.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: August 1, 2000
    Assignee: Zeochem
    Inventors: Albert M. Tsybulevskiy, Edward J. Rode, Eric J. Weston, Kerry C. Weston
  • Patent number: 5387289
    Abstract: A system for depositing a film on a substrate in a CVD process has a second-source injection sub-system for injecting a control gas. The deposition rate of the material deposited in the CVD process is a function of the concentration of the control gas at the point that material is deposited. The second source injection sub-system provides a concentration gradient of the control gas relative to the substrate surface coated, and alters the thickness uniformity of the film. By controlling the gradient one may control the thickness uniformity profile. In another embodiment, the invention applies to dry etching with reactive gas, and the etching rate is controlled by second source provision of a control gas.
    Type: Grant
    Filed: September 22, 1992
    Date of Patent: February 7, 1995
    Assignee: Genus, Inc.
    Inventors: Johannes J. Schmitz, Raymond L. Chow, Sien G. Kang, Edward J. Rode, Frank O. Uher
  • Patent number: 5272112
    Abstract: A chemical vapor deposition process performed at a temperature below 440 degrees C. for blanket tungsten deposition as a step in manufacturing integrated circuits deposits an integrated film suitable for voidless fill of vias as small as 0.5 microns in width and with aspect ratios of more than 2, while providing resistivity well below 100 micro-ohms per square, film stress generally in the mid 7E+09 dynes per square centimeter and below, and reflectivity of more than 40%, measured relative to silicon at 436 nanometer wavelength for 1 micron film thickness, while avoiding the use of nitrogen in the process.
    Type: Grant
    Filed: November 9, 1992
    Date of Patent: December 21, 1993
    Assignee: Genus, Inc.
    Inventors: Johannes J. Schmitz, Sien G. Kang, Edward J. Rode