Patents by Inventor Edward K. Rice

Edward K. Rice has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10934212
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: March 2, 2021
    Assignee: PKL CORPORATION
    Inventor: Edward K. Rice
  • Patent number: 10173926
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: January 8, 2019
    Assignee: CSA Research LLC
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Publication number: 20180305256
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventor: Edward K. Rice
  • Publication number: 20160376194
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Application
    Filed: July 12, 2016
    Publication date: December 29, 2016
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Publication number: 20160272541
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Application
    Filed: May 26, 2016
    Publication date: September 22, 2016
    Inventor: Edward K. Rice
  • Patent number: 9394201
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: July 19, 2016
    Assignee: PKL Corporation
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Patent number: 9359258
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: June 7, 2016
    Assignee: PKL Corporation
    Inventor: Edward K. Rice
  • Publication number: 20160052825
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Application
    Filed: November 5, 2015
    Publication date: February 25, 2016
    Inventor: Edward K. Rice
  • Patent number: 9206083
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: December 8, 2015
    Assignee: PKL Corporation
    Inventor: Edward K. Rice
  • Publication number: 20150321955
    Abstract: Microparticles having crystalline needle or rod-shaped structures of, for example, an ettringite mineral grown and attached radially from their surface. A method including nucleating and growing crystalline needles/rods from the surface of a particle in the presence of a solution of calcium, sulfur, and aluminum such as calcium sulfoaluminate, lime and calcium sulfate is described. One example is the radial growth of ettringite needles on the surface of fly ash particles in calcium sulfoaluminate-based cement paste and concrete.
    Type: Application
    Filed: July 16, 2015
    Publication date: November 12, 2015
    Inventors: Eric P. Bescher, Jacob W. Stremfel, Grant M. Kao, John T. Salkowski, Walter J. Hoyle, John Kenneth Vallens, Edward K. Rice
  • Patent number: 9115024
    Abstract: Microparticles having crystalline needle or rod-shaped structures of, for example, an ettringite mineral grown and attached radially from their surface. A method including nucleating and growing crystalline needles/rods from the surface of a particle in the presence of a solution of calcium, sulfur, and aluminum such as calcium sulfoaluminate, lime and calcium sulfate is described. One example is the radial growth of ettringite needles on the surface of fly ash particles in calcium sulfoaluminate-based cement paste and concrete.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 25, 2015
    Assignee: Macael, Inc.
    Inventors: Eric P. Bescher, Jacob W. Stremfel, Grant M. Kao, John T. Salkowski, Walter J. Hoyle, John Kenneth Vallens, Edward K. Rice
  • Publication number: 20150166408
    Abstract: Addition of coal fly ash to calcium sulfoaluminate rapid-setting cements can lead to significant improvement and optimization of its properties. The addition of coal fly ash led to increased compressive strength and freeze-thaw durability while decreasing shrinkage and autoclave expansion. The presence of a super plasticizing agent negatively affected both compressive strength and shrinkage when used in combination with fly ash.
    Type: Application
    Filed: February 24, 2015
    Publication date: June 18, 2015
    Inventors: Eric P. Bescher, Edward K. Rice, Grant M. Kao
  • Publication number: 20150107493
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 23, 2015
    Inventor: Edward K. Rice
  • Publication number: 20150000568
    Abstract: The carefully controlled addition of inorganic fillers to calcium sulfoaluminate rapid-setting cements can lead to significant improvement and optimization of its properties. Generally, prior art achieves cement optimization using costly and unstable organic additives. In the present invention, the addition of three inorganic additives such as coal ash, limestone or kiln dust led to appreciable improvement in the properties of calcium sulfoaluminate-containing cements. The addition of coal fly ash led to increased compressive strength and freeze-thaw durability while decreasing shrinkage and autoclave expansion. The addition of limestone was shown to control the compressive strength while not affecting the setting time, and the addition of cement kiln dust was shown to control the compressive strength while increasing the setting time. And finally, the presence of a super plasticizing agent was shown to negatively affect both compressive strength and shrinkage when used in combination with fly ash.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: Eric P. Bescher, Edward K. Rice, Grant M. Kao
  • Publication number: 20140364543
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Patent number: 8828136
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: September 9, 2014
    Assignee: PKL Corporation
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Publication number: 20140202360
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: PKL Corporation
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Patent number: 8715409
    Abstract: A calcium sulfoaluminate-based concrete with a permeability of less than 1000 Coulombs. Rapid-setting low chloride-ion permeability calcium sulfoaluminate (CSA) cements and concretes include CSA and a suitable polymer such as a sol-gel derived, organic-inorganic, silica based hybrid coating solutions of polystyrene-butylacrylate polymers containing active silanol groups protected by hydroxyl groups containing polyalcohol, or other polymers. Such polymers may be added as powders or as liquid in the finish mill. Other rapid-setting low chloride-ion permeability (CSA) cements and concretes include CSA with selected particle size distributions, and do not require use of any polymer. These CSA cements and concretes have low chloride-ion permeability, high early strength, fast setting times, low-shrinkage, and high freeze-thaw resistance.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 6, 2014
    Assignee: PKL Corporation
    Inventors: Edward K. Rice, Grant M. Kao, Eric P. Bescher
  • Publication number: 20140060391
    Abstract: A shrinkage compensating concrete does not require restraint. The expansive forces developed during hydration compensate for concrete shrinkage, obviating the need for any added internal or external restraint element. Using this new shrinkage compensating concrete, substantially crack-free slabs may be built without using restraining steel bars, fibers, or other separate restraining element. The shrinkage compensating concrete includes a cement that develops internal expansive forces that never exceed the tensile strength of the concrete, such that the internal expansion compensates for the concrete shrinkage. The expansive cement may be an ASTMS, M or S cement, or other expansive cements may also be used.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Inventor: Edward K. Rice
  • Patent number: 8545619
    Abstract: Synthetic fibers, such as polypropylene fibers, are mixed in a shrinkage compensating concrete to provide restraint in lieu of conventional steel reinforcement used in a shrinkage compensating concrete. While the synthetic fibers have a low elastic modulus and low strength, they act to restrain expansion of the concrete in the same way that conventional steel rebar does. In addition, only a small amount of the synthetic fibers are needed to restrain the expansion. As a result, shrinkage compensating concrete can be used in more varied applications, and can be provided more quickly, easily and inexpensively. Construction time requirements and expenses of concrete structures are correspondingly reduced.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: October 1, 2013
    Assignee: PKL Corporation
    Inventor: Edward K. Rice