Patents by Inventor Edward L. Cambridge

Edward L. Cambridge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4634581
    Abstract: A process is described for the formation of high purity alumina from Bayer Process alumina trihydrate (gibbsite). The solid hydrated alumina is reacted with concentrated HCl to cause partial or complete conversion to aluminum chloride hexahydrate (ACH). The ACH or mixture of ACH and unreacted hydrated alumina is recovered as a solid and calcined in a single or multistage calcination to high purity alumina. Soda contents in the product anhydrous alumina can be reduced by 98% or greater. Contents of other impurities, such as silica, iron, magnesium, etc., are also markedly reduced. Different degrees of impurity reduction can be obtained by controlling the degree of conversion of the hydrated alumina to ACH and by recycling and treating the acid after solid/liquid separation. The purified products find use in the specialty ceramics field, as catalyst supports, as adsorbents, in electronic components, in prosthetic devices or other applications in which alumina of controlled degrees of purity offers an advantage.
    Type: Grant
    Filed: February 5, 1986
    Date of Patent: January 6, 1987
    Assignee: Atlantic Richfield Company
    Inventors: Edward L. Cambridge, Raouf O. Loutfy, James C. Withers, Daniel M. Blake
  • Patent number: 4551218
    Abstract: In an electrolytic reduction cell in which molten metal is produced by electrolysis of a molten electrolyte, less dense than the molten metal product, the molten product metal collects at the bottom of the cell. A filter is provided at this location and is constructed from a material which is resistant to attack by both the molten metal and molten electrolyte, and which is wetted by the molten metal, but not by the electrolyte. By correcting sizing of the passage or passages in the filter molten metal product can be drawn out of the cell without simultaneous withdrawal of molten electrolyte. In the case of a cell for the production of aluminium the filter is preferably constructed from titanium diboride.
    Type: Grant
    Filed: June 23, 1983
    Date of Patent: November 5, 1985
    Assignee: Alcan International Limited
    Inventors: Adam J. Gesing, John McIntyre, Meine Vandermeulen, Edward L. Cambridge, Charles J. Rogers
  • Patent number: 4465659
    Abstract: An improved method of producing anhydrous aluminum chloride via aluminum chloride hexahydrate is provided. In a preferred embodiment the method is incorporated into a process for producing aluminum from aluminous ores, and particularly from domestic ore sources comprising (1) acid leaching an aluminous ore to produce aluminum chloride hexahydrate (ACH); (2) calcining the ACH to a specific temperature of above about 450.degree. C. to produce highly reactive aluminous particles containing high residual chloride and low residual hydrogen levels; (3) reductively chlorinating the calcined ACH at a low temperature to produce anhydrous aluminum chloride suitable for electrolytic reduction; and (4) electrolytically reducing the anhydrous aluminum chloride in a fused salt to produce aluminum metal and chlorine which is recycled to step (3).
    Type: Grant
    Filed: July 21, 1982
    Date of Patent: August 14, 1984
    Assignee: Atlantic Richfield Company
    Inventors: Edward L. Cambridge, Raouf O. Loutfy, James C. Withers
  • Patent number: 4444740
    Abstract: A method for recovery of fluoride values from spent potlining and fluoride containing insulating materials associated with the potlining is disclosed. Spent potlining and the insulating materials are reduced to a fine particle size and incinerated. The ash residue is leached with a dilute caustic and the leachate is treated with a calcium compound to precipitate calcium fluoride. The calcium fluoride is dried to a moisture content of less than 0.1 percent and is treated with about 93 to 99 percent concentration of sulfuric acid to produce hydrogen fluoride gas and a metal sulfate. The hydrogen fluoride gas is fed into an alumina dry scrubber to produce alumina with absorbed fluorides to be used as feed material to reduction cells used in the manufacture of aluminum by electrolytic reduction. The metal sulfate residue is treated with lime and constitutes an environmentally safe product which can be disposed of as landfill material.
    Type: Grant
    Filed: February 14, 1983
    Date of Patent: April 24, 1984
    Assignee: Atlantic Richfield Company
    Inventors: John B. Snodgrass, Edward L. Cambridge
  • Patent number: 4443313
    Abstract: In an electrolytic reduction cell for the production of molten metal, particularly aluminium, by electrolysis of a less dense salt monolayer of ceramic shapes is located on the floor of the cell. Such shapes are formed of a ceramic material, wettable by molten aluminium, but not wettable by the cell electrolyte. The spacing between adjacent shapes and/or the apertures in individual shapes is selected such that interfaced surface forces prevent entry of electrolyte between the shapes. The shapes may be tiles, honeycombs, cylinders, tubes, balls etc. The product metal may be collected in a sump for periodic withdrawal from the cell or withdrawn continuously or at short intervals through a selective filter that permits passage of molten metal, but not of molten cell electrolyte, at low withdrawal rates.
    Type: Grant
    Filed: June 23, 1982
    Date of Patent: April 17, 1984
    Assignee: Alcan International Limited
    Inventors: Adam J. Gesing, John McIntyre, Meine Vandermeulen, Edward L. Cambridge, Thomas P. DeAngelis
  • Patent number: 4230540
    Abstract: For the clearance of anode effects in operation of electrolytic cells for aluminium production, movement in the metal pool is induced to effect short-circuiting of the cell and disturbance of any gas film on the face of the anode(s) by raising the anode(s) and then lowering them to datum position and/or tilting the anode in relation to datum position. Upward movement is terminated either after a predetermined distance or when a predetermined cell voltage is attained. Fresh alumina is introduced into the cell by breaking alumina crust by anode movement or by independent supply.
    Type: Grant
    Filed: April 25, 1979
    Date of Patent: October 28, 1980
    Assignee: Alcan Research and Development Limited
    Inventors: Anthony M. Archer, Edward L. Cambridge, Douglas F. Hewgill