Patents by Inventor Edward L. Sheldon

Edward L. Sheldon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130150248
    Abstract: The invention provides arrays of immobilized probes, and methods employing the arrays, for detecting mutations in the biotransformation genes, such as cytochromes P450. For example, one such array comprises four probe sets. A first probe set comprises a plurality of probes, each probe comprising a segment of at least three nucleotides exactly complementary to a subsequence of a reference sequence from a biotransformation gene, the segment including at least one interrogation position complementary to a corresponding nucleotide in the reference sequence. Second, third and fourth probe sets each comprise a corresponding probe for each probe in the first probe set.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 13, 2013
    Applicant: AFFYMETRIX, INC.
    Inventors: Maureen T. Cronin, Charles G. Miyada, Earl A. Hubbell, Mark Chee, Stephen P.A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon
  • Publication number: 20120329677
    Abstract: The invention provides arrays of immobilized probes, and methods employing the arrays, for detecting mutations in the CFTR gene.
    Type: Application
    Filed: August 18, 2006
    Publication date: December 27, 2012
    Inventors: Maureen T. Cronin, Charles Garrett Miyada, Earl A. Hubbell, Mark Chee, Stephen P.A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon
  • Patent number: 7857957
    Abstract: We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: December 28, 2010
    Assignee: Gamida for Life B.V.
    Inventors: Jing Cheng, Lei Wu, Michael J. Heller, Edward L. Sheldon, Jonathan M. Diver, James P. O'Connell, Dan Smolko, Shila Jalali, David Willoughby
  • Patent number: 7846659
    Abstract: The invention provides arrays of immobilized probes, and methods employing the arrays, for detecting mutations in the biotransformation genes, such as cytochromes P450. For example, one such array comprises four probe sets. A first probe set comprises a plurality of probes, each probe comprising a segment of at least three nucleotides exactly complementary to a subsequence of a reference sequence from a biotransformation gene, the segment including at least one interrogation position complementary to a corresponding nucleotide in the reference sequence. Second, third and fourth probe sets each comprise a corresponding probe for each probe in the first probe set.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: December 7, 2010
    Assignee: Affymetrix, Inc.
    Inventors: Maureen T. Cronin, Charles G Miyada, Earl A. Hubbell, Mark Chee, Stephen P. A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon
  • Publication number: 20080261832
    Abstract: The invention provides arrays of immobilized probes, and methods employing the arrays, for detecting mutations in the CFTR gene.
    Type: Application
    Filed: August 18, 2006
    Publication date: October 23, 2008
    Inventors: Maureen T. Cronin, Charles Garrett Miyada, Earl A. Hubbell, Mark Chee, Stephen P.A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon
  • Patent number: 7399584
    Abstract: The invention provides methods of comparing a target nucleic acid with a reference nucleic acid using nucleic acid arrays.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: July 15, 2008
    Assignee: Affymetrix, Inc.
    Inventors: Maureen T. Cronin, Charles Garrett Miyada, Earl A. Hubbell, Mark Chee, Stephen P. A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon
  • Patent number: 7115364
    Abstract: The invention provides chips of immobilized probes, and methods employing the chips, for comparing a reference polynucleotide sequence of known sequence with a target sequence showing substantial similarity with the reference sequence, but differing in the presence of e.g., mutations.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: October 3, 2006
    Assignee: Affymetrix, Inc.
    Inventors: Mark Chee, Maureen T. Cronin, Stephen P. A. Fodor, Thomas R. Gingeras, Xiaohua C. Huang, Earl A. Hubbell, Robert J. Lipshutz, Peter E. Lobban, Charles Garrett Miyada, Macdonald S. Morris, Nila Shah, Edward L. Sheldon
  • Patent number: 6989086
    Abstract: The present invention comprises devices and methods for performing channel-less separation of cell particles by dielectrophoresis, DC high voltage-pulsed electronic lysis of separated cells, separation of desired components from crude mixtures such as cell lysates, and/or enzymatic reaction of such lysates, all of which can be conducted on a single bioelectronic chip. A preferred embodiment of the present invention comprises a cartridge (10) including a microfabricated silicon chip (12) on a printed circuit board (14) and a flow cell (16) mounted to the chip (12) to form a flow chamber. The cartridge (10) also includes output pins (22) for electronically connecting the cartridge (10) to an electronic controller. The chip (12) % includes a plurality of circular microelectrodes (24) which are preferably coated with a protective permeation layer. Specific cells from various cell mixtures were separated, lysed, and enzymatically digested on the chip.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: January 24, 2006
    Assignee: Nanogen, Inc.
    Inventors: Jing Cheng, Edward L. Sheldon, III, Lei Wu, James P. O'Connell
  • Patent number: 6824740
    Abstract: Systems and methods for the electronic sample preparation of biological materials utilize the differential charge-to-mass ratio and/or the differential affinity of sample constituents to separation materials for sample preparation. An integrated system is provided for performing some or all of the processes of: receipt of biological materials, cell selection, sample purification, sample concentration, buffer exchange, complexity reduction and/or diagnosis and analysis. In one embodiment, one or more sample chambers adapted to receive a buffer solution are formed adjacent to a spacer region which may include a trap or other affinity material, electrophoretic motion of the materials to be prepared being effected through operation of electrodes. In another aspect of this invention, a transporter or dipstick serves to collect and permit transport of materials, such as nucleic acids, most preferably DNA and/or RNA.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: November 30, 2004
    Assignee: Nanogen, Inc.
    Inventors: Edward L. Sheldon, III, Thomas R. Jackson, Paul D. Swanson, Bradley S. Scott, Michael J. Heller
  • Publication number: 20040077074
    Abstract: A device includes an inlet for receipt of a sample. A first chamber is coupled to the inlet and includes at least one affinity region. A second chamber is disposed adjacent to the first chamber. The first chamber and the second chamber share a common intermediate member, the intermediate member having at least one via formed in the common intermediate member. The second chamber includes an assay chip comprising an array of addressable electrodes. An outlet is coupled to the second chamber. The device may be used to selectively amplify and elute nucleic acids for subsequent detection and analysis.
    Type: Application
    Filed: October 14, 2003
    Publication date: April 22, 2004
    Applicant: Nanogen, Inc.
    Inventors: Donald E. Ackley, Edward L. Sheldon, Michael K. Krihak
  • Patent number: 6638482
    Abstract: Methods and apparatus for use of a stacked, reconfigurable system is provided. The stacked, reconfigurable system includes an inlet for receipt of a sample, a first chamber defined by a bottom support, an intermediate member, and a first spacer, the first chamber being coupled to the inlet through the bottom support, the first chamber including an analysis system having electrodes for electrophoretic transport of material. A second chamber is stacked on top of the first chamber, the second chamber being defined by the intermediate member, a top member, and a second spacer, the second chamber being in fluid communication with the first chamber through at least one via formed in the intermediate member, the second chamber being electrically reconfigurable to permit action such as, for example, synthesis of a compound or specialized analysis. The apparatus can be used to perform analysis on charged biological materials.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: October 28, 2003
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Edward L. Sheldon, Michael K. Krihak
  • Publication number: 20030165823
    Abstract: The invention provides arrays of immobilized probes, and methods employing the arrays, for detecting mutations in the CFTR gene.
    Type: Application
    Filed: February 22, 2000
    Publication date: September 4, 2003
    Inventors: Maureen T. Cronin, Charles Garrett Miyada, Earl A. Hubbell, Mark Chee, Stephen P. A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon
  • Publication number: 20020155586
    Abstract: We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.
    Type: Application
    Filed: June 5, 2002
    Publication date: October 24, 2002
    Applicant: Nanogen, Inc.
    Inventors: Jing Cheng, Lei Wu, Michael J. Heller, Edward L. Sheldon, Jonathan M. Diver, James P. O'Connell, Dan Smolko, Shila Jalali, David Willoughby
  • Patent number: 6468744
    Abstract: The invention provides methods for detecting variations in polymorphic sites and/or variations in gene copy number. The methods are particularly useful for analysis of biotransformation genes, such as cytochromes P450.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: October 22, 2002
    Assignee: Affymetrix, Inc.
    Inventors: Maureen T. Cronin, Edward L. Sheldon, Charles G. Miyada, Earl A. Hubbell, Mark Chee, Stephen P. A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris
  • Patent number: 6423271
    Abstract: A multilayer, laminated device for performing fluidic operations includes a first exterior support layer, an adjacent layer disposed in laminated relationship with a portion of the exterior support layer, a second exterior support layer disposed in laminated relationship with a portion of the adjacent layer, and a fluidic pump that is disposed in the adjacent layer. The fluidic pump includes a first gear rotationally mounted to the adjacent layer, the first gear having a magnet contained therein. A second gear is rotationally mounted to the adjacent layer, the second gear having a magnet contained therein, the second gear being engaged with the first gear in a meshed relationship.
    Type: Grant
    Filed: March 16, 2000
    Date of Patent: July 23, 2002
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Thomas R. Jackson, Edward L. Sheldon, III
  • Patent number: 6375899
    Abstract: Methods, apparatus, and applications for use of a stacked, reconfigurable system for electrophoretic transport are provided. In one embodiment, a system having a first chamber including at least a bottom support and an intermediate support, and a second chamber, said second chamber including a bottom support and a top member, the first and second chambers being coupled through a via. Electrophoretic, and optional electro-osmotic and thermal, transport is effected. In another aspect of this invention, three or more chambers are coupled by an electrophoretic buss. The electrophoretic buss includes driving electrodes and is adapted to receive fluid containing materials for transport. The chambers are coupled to the electrophoretic buss and serve as a tap from the buss for delivery of charged materials. In one embodiment, certain functions are performed in different chambers.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: April 23, 2002
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Edward L. Sheldon, Michael K. Krihak
  • Publication number: 20010045359
    Abstract: The present invention comprises devices and methods for performing channel-less separation of cell particles by dielectrophoresis, DC high voltage-pulsed electronic lysis of separated cells, separation of desired components from crude mixtures such as cell lysates, and/or enzymatic reaction of such lysates, all of which can be conducted on a single bioelectronic chip. A preferred embodiment of the present invention comprises a cartridge (10) including a microfabricated silicon chip (12) on a printed circuit board (14) and a flow cell (16) mounted to the chip (12) to form a flow chamber. The cartridge (10) also includes output pins (22) for electronically connecting the cartridge (10) to an electronic controller. The chip (12) includes a plurality of circular microelectrodes (24) which are preferably coated with a protective permeation layer. Specific cells from various cell mixtures were separated, lysed, and enzymatically digested on the chip.
    Type: Application
    Filed: July 13, 2001
    Publication date: November 29, 2001
    Applicant: Nanogen, Inc.
    Inventors: Jing Cheng, Edward L. Sheldon, Lei Wu, James P. O'Connell
  • Patent number: 6319472
    Abstract: Methods, apparatus, and applications for use of a stacked, reconfigurable system for electrophoretic transport are provided. In one embodiment, a system having a first chamber including at least a bottom support and an intermediate support, and a second chamber, said second chamber including a bottom support and a top member, the first and second chambers being coupled through a via. Electrophoretic, and optional electro-osmotic and thermal, transport is effected. In another aspect of this invention, three or more chambers are coupled by an electrophoretic buss. The electrophoretic buss includes driving electrodes and is adapted to receive fluid containing materials for transport. The chambers are coupled to the electrophoretic buss and serve as a tap from the buss for delivery of charged materials. In one embodiment, certain functions are performed in different chambers.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: November 20, 2001
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Edward L. Sheldon, Michael K. Krihak
  • Patent number: 6309602
    Abstract: Methods, apparatus, and applications for use of a stacked, reconfigurable system for electrophoretic transport are provided. In one embodiment, a system having a first chamber including at least a bottom support and an intermediate support, and a second chamber, said second chamber including a bottom support and a top member, the first and second chambers being coupled through a via. Electrophoretic, and optional electro-osmotic and thermal, transport is effected. In another aspect of this invention, three or more chambers are coupled by an electrophoretic buss. The electrophoretic buss includes driving electrodes and is adapted to receive fluid containing materials for transport. The chambers are coupled to the electrophoretic buss and serve as a tap from the buss for delivery of charged materials. In one embodiment, certain functions are performed in different chambers.
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: October 30, 2001
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Edward L. Sheldon, Michael K. Krihak
  • Patent number: 6309823
    Abstract: The invention provides arrays of immobilized probes, and methods employing the arrays, for detecting mutations in the biotransformation genes, such as cytochromes P450. For example, one such array comprises four probe sets. A first probe set comprises a plurality of probes, each probe comprising a segment of at least three nucleotides exactly complementary to a subsequence of a reference sequence from a biotransformation gene, the segment including at least one interrogation position complementary to a corresponding nucleotide in the reference sequence. Second, third and fourth probe sets each comprise a corresponding probe for each probe in the first probe set.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: October 30, 2001
    Assignee: Affymetrix, Inc.
    Inventors: Maureen T. Cronin, Charles G Miyada, Earl A. Hubbell, Mark Chee, Stephen P. A. Fodor, Xiaohua C. Huang, Robert J. Lipshutz, Peter E. Lobban, MacDonald S. Morris, Edward L. Sheldon