Patents by Inventor Edward Lakatos

Edward Lakatos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8865473
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. A detecting apparatus may be configured so that light from luminescent samples pass through a collimator, a first lens, a filter, and a camera lens, whereupon an image is created by the optics on the charge-coupled device (CCD) camera. The detecting apparatus may further include central processing control of all operations, multiple wavelength filter wheel, and/or a robot for handling of samples and reagents.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Michael Gambini, Jeff Levi, John Voyta, Bruce E. DeSimas, II, Edward Lakatos, Israel Metal, George Sabak, Yongdong Wang, Susan A. Atwood-Stone
  • Patent number: 8532931
    Abstract: A method for calculating a sample size for a clinical trial of a first treatment can be provided. The method can include reading a survival curve from a clinical trial for a second treatment, wherein the clinical trial may be selected by a user interacting with a user interface. The method can further include selecting a plurality of points on the survival curve and storing coordinates for each of the plurality of points, wherein the plurality of points are selected so as to capture substantial features of the survival curve. Then, a hazard curve is generated based on the coordinates that were stored, wherein the hazard curve may be a step function. The method can further include calculating a sample size for the clinical trial of the first treatment using a Markov model based on the hazard curve.
    Type: Grant
    Filed: September 7, 2008
    Date of Patent: September 10, 2013
    Inventor: Edward Lakatos
  • Publication number: 20120309103
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Michael Gambini, John C. Voyta, John Atwood, Susan A. Atwood-Stone, Bruce E. DeSimas, II, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
  • Patent number: 8278114
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. A detecting apparatus may be configured so that light from luminescent samples pass through a collimator, a a first lens, a filter, and a camera lens, whereupon an image is created by the optics on the charge-coupled device (CCD) camera. The detecting apparatus may further include central processing control of all operations, multiple wavelength filter wheel, and/or a robot for handling of samples and reagents.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: October 2, 2012
    Assignee: Applied Biosystems, LLC
    Inventors: Michael Gambini, Jeff Levi, John Voyta, John Atwood, Susan Atwood-Stone, legal representative, Bruce De Simas, Edward Lakatos, Israel Metal, George Sabak, Yongdong Wang
  • Publication number: 20100248387
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 30, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Michael R. Gambini, John C. Voyta, John Atwood, Susan A. Atwood-Stone, Bruce E. DeSimas, II, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
  • Publication number: 20100063741
    Abstract: A method for calculating a sample size for a clinical trial of a first treatment can be provided. The method can include reading a survival curve from a clinical trial for a second treatment, wherein the clinical trial may be selected by a user interacting with a user interface. The method can further include selecting a plurality of points on the survival curve and storing coordinates for each of the plurality of points, wherein the plurality of points are selected so as to capture substantial features of the survival curve. Then, a hazard curve is generated based on the coordinates that were stored, wherein the hazard curve may be a step function. The method can further include calculating a sample size for the clinical trial of the first treatment using a Markov model based on the hazard curve.
    Type: Application
    Filed: September 7, 2008
    Publication date: March 11, 2010
    Inventor: Edward Lakatos
  • Patent number: 7670848
    Abstract: In a luminescence detecting apparatus and method for analyzing luminescent samples, luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, an infrared filter, and a camera lens, whereupon a focused image is created by the optics on the camera. The use of an infrared filter suppresses stray IR radiation resulting from plate phosphorescence (which can result in abnormally high backgrounds and/or alteration of the image received by the camera).
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: March 2, 2010
    Assignee: Applied Biosystems, LLC
    Inventors: Michael R. Gambini, John C. Voyta, John Atwood, Susan A. Atwood-Stone, legal representative, Bruce E. DeSimas, II, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
  • Publication number: 20070238161
    Abstract: An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
    Type: Application
    Filed: May 17, 2007
    Publication date: October 11, 2007
    Applicant: Applera Corporation
    Inventors: Anthony Cerrone, Edward Lakatos, Michael Gambini, Eugene Young, Susan Stone, Judith Atwood
  • Publication number: 20070154939
    Abstract: An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
    Type: Application
    Filed: February 26, 2007
    Publication date: July 5, 2007
    Applicant: Applera Corporation
    Inventors: Anthony Cerrone, Edward Lakatos, Michael Gambini, Eugene Young, John Atwood, Susan Stone, Judith Atwood
  • Publication number: 20070148761
    Abstract: An optical instrument monitors PCR replication of DNA in a reaction apparatus having vials of reaction ingredients. A beam splitter passes an excitation beam to the vials. An emission beam from the reaction ingredients can be passed by the beam splitter to a detector from which a processor can compute DNA concentration. A reference strip with a plurality of reference emitters can be provided which emits reference beams of different intensity, from which the processor can select an optimum emitter for compensating for drift. Exposure time can be automatically adjusted for keeping within optimum dynamic ranges of the detector and processor. A module of the beam splitter and associated optical filters can be associated with a selected dye, and can be replaceable for different dyes.
    Type: Application
    Filed: February 13, 2007
    Publication date: June 28, 2007
    Inventors: Anthony Cerrone, Edward Lakatos, Michael Gambini, Eugene Young, Judith Atwood, John Atwood, Susan Stone
  • Publication number: 20060199259
    Abstract: An instrument for monitoring replication of DNA is provided.
    Type: Application
    Filed: April 18, 2006
    Publication date: September 7, 2006
    Applicant: Applera Corporation
    Inventors: Anthony Cerrone, Edward Lakatos, Michael Gambini, Eugene Young, Susan Stone, Judith Atwood, John Atwood
  • Publication number: 20060128009
    Abstract: An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
    Type: Application
    Filed: January 17, 2006
    Publication date: June 15, 2006
    Inventors: Anthony Cerrone, Edward Lakatos, Michael Gambini, Eugene Young, Susan Stone, Judith Atwood
  • Publication number: 20060088444
    Abstract: In a luminescence detecting apparatus and method for analyzing luminescent samples, luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, an infrared filter, and a camera lens, whereupon a focused image is created by the optics on the camera. The use of an infrared filter suppresses stray IR radiation resulting from plate phosphorescence (which can result in abnormally high backgrounds and/or alteration of the image received by the camera).
    Type: Application
    Filed: October 18, 2005
    Publication date: April 27, 2006
    Inventors: Michael Gambini, John Voyta, John Atwood, Susan Atwood Stone, Bruce DeSimas, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
  • Publication number: 20030092194
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Application
    Filed: December 20, 2002
    Publication date: May 15, 2003
    Inventors: Michael R. Gambini, John C. Voyta, John Atwood, Bruce E. DeSimas, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang
  • Patent number: 6518068
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: February 11, 2003
    Assignee: Tropix, Inc.
    Inventors: Michael R. Gambini, John C. Voyta, John Atwood, Bruce E. DeSimas, II, Edward Lakatos, Jeff Levi, Israel Metal, George Sabak, Yongdong Wang