Patents by Inventor Edward Landis Weist, Jr.

Edward Landis Weist, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130255492
    Abstract: A process for separating a first gas, for example CO2, from a feed gas mixture comprising the first gas and a second gas, for example H2, in five or more adsorption beds each containing an adsorbent selective for the first gas. The process comprises subjecting each of the adsorption beds to a repetitive cycle comprising, in sequence, (a) a feed step, (b) a rinse step, (c) a pressure decreasing equalization step, (d) a blowdown step, (e) an evacuation step, (f) a pressure increasing equalization step, and (g) a repressurization step. The feed gas mixture may be a reformate from a steam-hydrocarbon reforming process.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 3, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Kuo-Kuang Hsu, Jonathan James Berg, Jianguo Xu, Edward Landis Weist, JR.
  • Publication number: 20130239807
    Abstract: A process for separating a primary gas component from a feed gas mixture comprising the primary gas component and secondary gas components in four or more adsorption beds. The process comprises subjecting each of the four or more adsorption beds to a repetitive cycle. The repetitive cycle comprises, in sequence, a feed step, a pressure decreasing equalization step, a provide purge step, a blowdown step, a purge step, a pressure increasing equalization step, and a repressurization step. During the pressure decreasing equalization step, rinse gas is co-currently introduced simultaneous with the withdrawal of pressure equalization gas. Rinse gas is formed by compressing blowdown gas and/or purge gas effluent from the adsorption bed undergoing the purge step. The process is particularly suited for separating H2 from a reformate stream.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Edward Landis Weist, JR., Jianguo Xu
  • Publication number: 20130243686
    Abstract: A hydrogen production process wherein steam and a hydrocarbon feed is reacted in a prereformer, the prereformed intermediate is further reacted in an oxygen-based reformer, the reformate is shifted and then separated by a pressure swing adsorber to form a H2 product stream and a tail gas, a first portion of the tail gas is recycled to the prereformer and/or the oxygen-based reformer, and a second portion of the tail gas is recycled to the pressure swing adsorber.
    Type: Application
    Filed: March 15, 2012
    Publication date: September 19, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Eugene S. Genkin, Patricia Kentosh Hershman, Edward Landis Weist, JR., Jianguo Xu
  • Publication number: 20130125756
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: May 21, 2012
    Publication date: May 23, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Patent number: 8337674
    Abstract: Helium is introduced as an additive to any of the oxygen streams introduced into an ozone generator, such as a dielectric discharge (cold plasma) ozone generator, where the effluent of the generator is directed to an adsorption process for separating the ozone from the oxygen. Also disclosed is an improved PSA cycle, which is designed to reduce the amount of make-up helium and oxygen required to sustain the ozone generation and recovery process.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: December 25, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Annemarie Ott Weist, Shailesh Pradeep Gangoli, Edward Landis Weist, Jr.
  • Patent number: 8197580
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: June 12, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 8029603
    Abstract: A pressure swing adsorption cycle designed to reduce the variations in ozone concentration, and produce a higher average ozone concentration, in a product gas stream throughout the cycle. The cycle includes a relatively long air sweep stage and provides for the overlapping of the air sweep stage in two adsorber vessels. Effluent from an adsorber vessel in a feed rinse stage is routed to another adsorber vessel that is in an air sweep stage.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 4, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventor: Edward Landis Weist, Jr.
  • Publication number: 20110154989
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: March 8, 2011
    Publication date: June 30, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Patent number: 7909913
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: March 22, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, Jr., Robert Quinn, Erin Marie Sorensen
  • Patent number: 7862645
    Abstract: Method for argon recovery that comprises (a) providing a feed gas mixture comprising argon and nitrogen; (b) contacting at least a portion of the feed gas mixture with a nitrogen-selective adsorbent in a cyclic pressure swing adsorption process and adsorbing at least a portion of the nitrogen on the adsorbent in a first pressure range above 100 psia to provide a purified argon product and an adsorbent comprising adsorbed nitrogen; and (c) desorbing the adsorbed nitrogen in one or more regeneration steps effected in a second pressure range between atmospheric pressure and a super-atmospheric pressure below any pressure in the first pressure range, inclusive; wherein the cyclic pressure swing adsorption process is effected at an average operating temperature of at least about 0° C.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: January 4, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Roger Dean Whitley, Edward Landis Weist, Jr., Annemarie Ott Weist, Steven Ray Auvil
  • Patent number: 7819947
    Abstract: Adsorption process for recovering ozone from a feed gas mixture containing at least ozone and oxygen comprising (a) introducing the feed gas mixture into a first end of an adsorber vessel containing a zeolite adsorbent and selectively adsorbing ozone on the adsorbent; (b) withdrawing from a second end of the vessel a stream of oxygen essentially free of ozone; (c) terminating the flow of the feed gas mixture, introducing a purge gas into the second end of the vessel, and withdrawing from the first end of the vessel an outlet gas mixture containing at least purge gas and desorbed ozone; and (d) introducing an additional component into the feed gas mixture and/or the purge gas and adsorbing the additional component on the zeolite adsorbent. The additional component when adsorbed reduces the decomposition of ozone that would occur in the absence of the additional component adsorbed on the zeolite adsorbent.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: October 26, 2010
    Assignee: Air Products and Chemical, Inc.
    Inventors: Annemarie Ott Weist, Edward Landis Weist, Jr.
  • Publication number: 20100189635
    Abstract: A pressure swing adsorption cycle designed to reduce the variations in ozone concentration, and produce a higher average ozone concentration, in a product gas stream throughout the cycle. The cycle includes a relatively long air sweep stage and provides for the overlapping of the air sweep stage in two adsorber vessels. Effluent from an adsorber vessel in a feed rinse stage is routed to another adsorber vessel that is in an air sweep stage.
    Type: Application
    Filed: January 23, 2009
    Publication date: July 29, 2010
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Edward Landis Weist, JR.
  • Publication number: 20100187092
    Abstract: Helium is introduced as an additive to any of the oxygen streams introduced into an ozone generator, such as a dielectric discharge (cold plasma) ozone generator, where the effluent of the generator is directed to an adsorption process for separating the ozone from the oxygen. Also disclosed is an improved PSA cycle, which is designed to reduce the amount of make-up helium and oxygen required to sustain the ozone generation and recovery process.
    Type: Application
    Filed: January 23, 2009
    Publication date: July 29, 2010
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Annemarie Ott Weist, Shailesh Pradeep Gangoli, Edward Landis Weist, JR.
  • Patent number: 7695545
    Abstract: A process for selectively separating hydrogen from at least one more strongly adsorbable component in a plurality of adsorption beds to produce a hydrogen-rich product gas from a low hydrogen concentration feed with a high recovery rate. Each of the plurality of adsorption beds subjected to a repetitive cycle. The process comprises an adsorption step for producing the hydrogen-rich product from a feed gas mixture comprising 5% to 50% hydrogen, at least two pressure equalization by void space gas withdrawal steps, a provide purge step resulting in a first pressure decrease, a blowdown step resulting in a second pressure decrease, a purge step, at least two pressure equalization by void space gas introduction steps, and a repressurization step. The second pressure decrease is at least 2 times greater than the first pressure decrease.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: April 13, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr., Jeffrey Raymond Hufton, Paul Anthony Novosat
  • Publication number: 20100011955
    Abstract: Hydrogen sulfide is removed from a hydrogen rich gas stream using adsorbents having a low loss of carbon dioxide adsorption capacity upon sulfur loading including high purity silica gels, titania or highly cross-linked, non-chemically reactive resins. The adsorbents may be used to adsorb both carbon dioxide and hydrogen sulfide, or may be used as a guard bed upstream of a separate carbon dioxide adsorbent.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 21, 2010
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Jeffrey Raymond Hufton, Timothy Christopher Golden, Robin Joyce Maliszewskyj, Edward Landis Weist, JR., Robert Quinn, Erin Marie Sorensen
  • Publication number: 20090199710
    Abstract: Adsorption process for recovering ozone from a feed gas mixture containing at least ozone and oxygen comprising (a) introducing the feed gas mixture into a first end of an adsorber vessel containing a zeolite adsorbent and selectively adsorbing ozone on the adsorbent; (b) withdrawing from a second end of the vessel a stream of oxygen essentially free of ozone; (c) terminating the flow of the feed gas mixture, introducing a purge gas into the second end of the vessel, and withdrawing from the first end of the vessel an outlet gas mixture containing at least purge gas and desorbed ozone; and (d) introducing an additional component into the feed gas mixture and/or the purge gas and adsorbing the additional component on the zeolite adsorbent. The additional component when adsorbed reduces the decomposition of ozone that would occur in the absence of the additional component adsorbed on the zeolite adsorbent.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 13, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Annemarie Ott Weist, Edward Landis Weist, JR.
  • Publication number: 20090193967
    Abstract: Method for argon recovery that comprises (a) providing a feed gas mixture comprising argon and nitrogen; (b) contacting at least a portion of the feed gas mixture with a nitrogen-selective adsorbent in a cyclic pressure swing adsorption process and adsorbing at least a portion of the nitrogen on the adsorbent in a first pressure range above 100 psia to provide a purified argon product and an adsorbent comprising adsorbed nitrogen; and (c) desorbing the adsorbed nitrogen in one or more regeneration steps effected in a second pressure range between atmospheric pressure and a super-atmospheric pressure below any pressure in the first pressure range, inclusive; wherein the cyclic pressure swing adsorption process is effected at an average operating temperature of at least about 0° C.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Roger Dean Whitley, Edward Landis Weist, JR., Annemarie Ott Weist, Steven Ray Auvil
  • Patent number: 7491260
    Abstract: Method of operating a pressure swing adsorption system having a plurality of parallel adsorber vessels and a plurality of valves and gas manifolds adapted to introduce gas into each adsorber vessel and withdraw gas from each adsorber vessel in a cyclic series of sequential process steps. A leaking valve may be identified by (1) determining a value of an operating parameter that is a function of the mass of gas provided to a receiving adsorber vessel or withdrawn from an adsorber vessel during a selected process step, portion of a process step, or series of process steps; (2) determining the deviation of the value of the operating parameter from a predetermined reference value; and (3) using the magnitude and direction of the deviation to determine whether any valves are leaking.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: February 17, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Blaine Edward Herb, Charles Franklin Watson, Edward Landis Weist, Jr., Theodore Michael Sabram, Kuo-Kuang Hsu, Winfried Stephen Hoglen
  • Patent number: 7404846
    Abstract: Method for the separation of a gas mixture comprising providing a PSA system with at least one adsorber vessel containing adsorbent material that is selective for the adsorption of carbon monoxide and nitrogen, passing a feed gas mixture containing at least hydrogen and carbon monoxide and optionally containing nitrogen through the adsorbent material in a feed step and withdrawing a purified hydrogen product from the adsorber vessel, wherein the feed step has a duration or feed time period of about 30 seconds or less. The adsorbent material is characterized by any of (1) a Henry's law constant for carbon monoxide between about 2.5 and about 5.5 (mmole/g)/atm; (2) a carbon monoxide heat of adsorption between about 6.0 and about 7.5 kcal/gmole; (3) a Henry's law constant for nitrogen greater than about 1.5 (mmole/g)/atm; and (4) a selectivity of carbon monoxide to nitrogen between about 5.0 and about 8.0.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 29, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr., Paul Anthony Novosat
  • Patent number: 7390350
    Abstract: Method for the separation of a gas mixture comprising providing a pressure swing adsorption system having a plurality of adsorber vessels, wherein each vessel has an inlet, an outlet, and a bed of particulate adsorbent material disposed therein. The adsorbent material is selective for the adsorption of one or more components from the gas mixture, and each bed of adsorbent material is characterized by a bed depth and by an average particle diameter less than about 1.3 mm. A feed step is carried out during a feed time period wherein the gas mixture is introduced into the adsorber vessel, one or more components are selectively adsorbed from the gas mixture, and a product gas is withdrawn from the adsorber vessel. The bed depth in feet times the dimensionless ratio of the empty bed residence time to the feed time period is less than about 4.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: June 24, 2008
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Edward Landis Weist, Jr., Daniel Patrick Zwilling, Timothy Christopher Golden