Patents by Inventor Edward Lindsley

Edward Lindsley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109564
    Abstract: A method is provided that can include activating at least two wireless communication channels in parallel, between a first wireless transceiver and a second wireless transceiver. Each of the at least two wireless communication channels can operate at a different radio carrier frequency, and the first wireless transceiver may be part of a first vehicle. The method can also include transmitting, by the first wireless transceiver, common information in parallel on the at least two wireless communication channels to the second wireless transceiver and deactivating the at least two wireless communication channels.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 4, 2024
    Inventors: Padam Dhoj Swar, Carl L. Haas, Danial Rice, Rebecca W. Dreasher, Adam Hausmann, Matthew Steven Vrba, Edward J. Kuchar, James Lucas, Andrew Ryan Staats, Jerrid D. Chapman, Jeffrey D. Kernwein, Janmejay Tripathy, Stephen Craven, Tania Lindsley, Derek K. Woo, Ann K. Grimm, Scott Sollars, Phillip A. Burgart, James Allen Oswald, Shannon K. Struttmann, Stuart J. Barr, Keith Smith, Francois P. Pretorius, Craig K. Green, Kendrick Gawne, Irwin Morris, Joseph W. Gorman, Srivallidevi Muthusami, Mahesh Babu Natarajan, Jeremiah Dirnberger, Adam Franco
  • Patent number: 10779216
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for prioritized transmission of different data types, including VHF airband radio communication data (e.g., being transmitted or received from a control tower) over bonded communication modules at a remotely operated aerial vehicle. Embodiments of the invention include portable (and potentially mobile and/or remotely operated) vehicles for wirelessly transmitting and receiving various data types over a bonded mobile network and a control device (which can be fixed or portable) capable of receiving data transmitted from the mobile node and transmitting data to it. Different data types can be assigned different priorities, facilitating selective transmission of higher-priority data, such as, for example, VHF airband radio communication data, when quality degrades on a network link.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: September 15, 2020
    Assignee: Sqwaq, Inc.
    Inventors: Edward Lindsley, Michael B. Dodd
  • Patent number: 10694534
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for transferring data through a bonded communication link. A bonded communication link bonds together capabilities from each of a plurality of other communication links to form a higher bandwidth communication link relative to each of the plurality of other communication links considered separately. Link qualities can be monitored for each of the plurality of other communication links. Different priorities can be assigned to different types of data. Based on monitored link qualities and assigned data priorities, different data types can be routed via different of the other communication links. Routing different data types via different of the other communication links facilitates selective transmission of higher priority data when quality degrades on a communication link.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: June 23, 2020
    Assignee: Sqwaq, Inc.
    Inventors: Stefan E. De Nagy Koves Hrabar, Edward Lindsley
  • Patent number: 10409293
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for gimbal stabilized components for remotely operated vehicles. Aspects of the invention include a gimbal stabilized radar system. A radar unit is mounted on a vertical (or horizontal) gimbal attached to a remotely operated aerial vehicle. In aspects, a radar unit is mounted to a gimbal having multiple degrees of freedom. When the remotely operated aerial vehicle rotates and/or changes its orientation in space, the gimbal compensates keeping the direction and elevation angle of the radar essentially constant.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: September 10, 2019
    Assignee: Olaeris, Inc.
    Inventors: Paul E. I. Pounds, Edward Lindsley
  • Patent number: 10271261
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for prioritized transmission of different data types, including VHF airband radio communication data (e.g., being transmitted or received from a control tower) over bonded communication modules at a remotely operated aerial vehicle. Embodiments of the invention include portable (and potentially mobile and/or remotely operated) vehicles for wirelessly transmitting and receiving various data types over a bonded mobile network and a control device (which can be fixed or portable) capable of receiving data transmitted from the mobile node and transmitting data to it. Different data types can be assigned different priorities, facilitating selective transmission of higher-priority data, such as, for example, VHF airband radio communication data, when quality degrades on a network link.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: April 23, 2019
    Assignee: Sqwaq, Inc.
    Inventors: Edward Lindsley, Michael B. Dodd
  • Patent number: 10228691
    Abstract: The present invention extends to methods, systems, devices, and apparatus for augmented radar camera view for remotely operated vehicles. A camera and a radar unit are co-located on a remotely controlled aerial vehicle, for example, in a forward looking view. The camera captures images and the radar unit senses reflections from transmitted waves. The images (operator view) and radar returns (radar view) are combined in an augmented view. The augmented view is displayed to an operator (e.g., a pilot) at a control station to provide the operator with an augmented reality sense of obstacles in the environment of the remotely controlled aerial vehicle. Thus, when a remotely controlled aerial vehicle is flying through an environment that may be dark, clouded, foggy, etc., the operator may still be able to detect obstacles from the radar view.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 12, 2019
    Assignee: Olaeris, Inc.
    Inventors: Paul E. I. Pounds, Edward Lindsley
  • Patent number: 10205508
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for wireless communication between an operator of a remotely operated aircraft and a controlling entity. A communication converter at a remotely operated aircraft converts between radio communication (e.g., VHF airband) and communication over another wireless network (e.g., over a cellular network). Thus, aspects of the invention can be used to facilitate (e.g., more localized) radio communication between an operator (e.g., pilot) of a remotely operated aircraft and a controlling entity (e.g., a control center) when the operator (e.g., pilot) is physically located outside of (e.g., VHF) radio range from the controlling entity. Accordingly, a two-way voice communication link can be established between the operator and personnel at a control center.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: February 12, 2019
    Assignee: Sqwaq, Inc.
    Inventors: Edward Lindsley, Frederick J. Livingston, Miguel Abrantes Rufino, Michael B. Dodd
  • Patent number: 10159088
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for transferring data through a bonded communication link. A bonded communication link bonds together capabilities from each of a plurality of other communication links to form a higher bandwidth communication link relative to each of the plurality of other communication links considered separately. Link qualities can be monitored for each of the plurality of other communication links. Different priorities can be assigned to different types of data. Based on monitored link qualities and assigned data priorities, different data types can be routed via different of the other communication links. Routing different data types via different of the other communication links facilitates selective transmission of higher priority data when quality degrades on a communication link.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: December 18, 2018
    Assignee: Sqwaq, Inc.
    Inventors: Stefan E. De Nagy Koves Hrabar, Edward Lindsley
  • Patent number: 9862504
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for aligning a target with and/or over and/or into a specific position and orientation. Embodiments include one or more capture components, such as, engagement lines, spars, or struts, that can be actuated together or independently to position a vehicle in a capture area defined by a ring or other geometry. A vehicle can include a sloped surface feature configured to engage with the capture components. When actuated, the capture components draw the sloped surface feature towards and down into the center of the defined capture area. Variations allow a vehicle to be rotated in place, repositioned in place, or clamped securely in place. Positioning and rotation allows alignment with replenishment devices for resupplying and refueling. In this way, a vehicle is relieved from having to have precision terminal guidance for landing and recharging.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: January 9, 2018
    Assignee: Olaeris, Inc.
    Inventors: Paul E. I. Pounds, Edward Lindsley
  • Patent number: 9801201
    Abstract: The present invention extends to methods, systems, devices, apparatus, and computer program products for prioritized transmission of different data types over bonded communication modules. Embodiments of the invention include a portable (and potentially mobile and/or remotely operated) device for wirelessly transmitting and receiving various data types over a bonded mobile network and a control device (which can be fixed or portable) capable of receiving data transmitted from the mobile node and transmitting data to it. Different data types can be assigned different priorities, facilitating selective transmission of higher-priority data when quality degrades on a network link.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: October 24, 2017
    Assignee: Olaeris, Inc
    Inventors: Stefan E. De Nagy Koves Hrabar, Edward Lindsley
  • Patent number: 6317659
    Abstract: An improved aircraft flight management system (FMS) based on a layered subsystem architecture, residing on a computing platform and including an operator interface subsystem, a communications subsystem, a flight management subsystem, and a database management subsystem, wherein the architecture is predicated on the enforcement of subsystem-dependency rules wherein a given subsystem is allowed to depend only upon another subsystem in the same or lower hierarchical layer.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: November 13, 2001
    Assignee: Honeywell International Inc.
    Inventors: Steven Edward Lindsley, Richard Dean Clement, James F. McAndrew, Angela Grace Morgan, Kenneth Michael Munoz