Patents by Inventor Edward M. Yin

Edward M. Yin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240126120
    Abstract: A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated with backlight illumination from a direct-lit backlight unit. The backlight unit may include an array of light-emitting diodes (LEDs) on a printed circuit board. The display may have a notch to accommodate an input-output component. Reflective layers may be included in the notch. The backlight may include a color conversion layer with a property that varies as a function of position. The light-emitting diodes may be covered by a slab of encapsulant with recesses in an upper surface.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 18, 2024
    Inventors: Meizi Jiao, Joshua A. Spechler, Jie Xiang, Zhenyue Luo, Chungjae Lee, Morteza Amoorezaei, Mengyang Liang, Xinyu Zhu, Mingxia Gu, Jun Qi, Eric L. Benson, Victor H. Yin, Youchul Jeong, Xiang Fang, Yanming Li, Michael J. Lee, Marianna C. Sbordone, Ari P. Miller, Edward J. Cooper, Michael C. Sulkis, Francesco Ferretti, Seth G. McFarland, Mary M. Morrison, Eric N. Vergo, Terence Chan, Ian A. Guy, Keith J. Hendren, Sunitha Chandra
  • Patent number: 6977375
    Abstract: A multi-column electron beam inspection system is disclosed herein. The system is designed for electron beam inspection of semiconductor wafers with throughput high enough for in-line use. The system includes field emission electron sources, electrostatic electron optical columns, a wafer stage with six degrees of freedom of movement, and image storage and processing systems capable of handling multiple simultaneous image data streams. Each electron optical column is enhanced with an electron gun with redundant field emission sources, a voltage contrast plate to allow voltage contrast imaging of wafers, and an electron optical design for high efficiency secondary electron collection.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: December 20, 2005
    Assignee: Multibeam Systems, Inc.
    Inventors: Edward M. Yin, Alan D. Brodie, N. William Parker, Frank Ching-Feng Tsai
  • Patent number: 6844550
    Abstract: A multi-column electron beam inspection system is disclosed herein. The system is designed for electron beam inspection of semiconductor wafers with throughput high enough for in-line use. The system includes field emission electron sources, electrostatic electron optical columns, a wafer stage with six degrees of freedom of movement, and image storage and processing systems capable of handling multiple simultaneous image data streams. Each electron optical column is enhanced with an electron gun with redundant field emission sources, a voltage contrast plate to allow voltage contrast imaging of wafers, and an electron optical design for high efficiency secondary electron collection.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: January 18, 2005
    Assignee: Multibeam Systems, Inc.
    Inventors: Edward M. Yin, Alan D. Brodie, N. William Parker, Frank Ching-Feng Tsai
  • Patent number: 6777675
    Abstract: An electron beam column incorporating an asymmetrical detector optics assembly provides improved secondary electron collection. The electron beam column comprises an electron gun, an accelerating region, scanning deflectors, focusing lenses, secondary electron detectors and an asymmetrical detector optics assembly. The detector optics assembly comprises a field-free tube, asymmetrical with respect to the electron optical axis; the asymmetry can be introduced by offsetting the field-free tube from the electron optical axis or by chamfering the end of the tube. In other embodiments the detector optics assembly comprises a field-free tube and a voltage contrast plate, either or both of which are asymmetrical with respect to the electron optical axis.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: August 17, 2004
    Assignee: Multibeam
    Inventors: N. William Parker, Edward M. Yin, Frank Ching-Feng Tsai
  • Publication number: 20040119021
    Abstract: A charge particle optical column capable of being used in a high throughput, mutli-column, multi-beam electron beam lithography system is disclosed herein. The column has the following properties: purely electrostatic components; small column footprint (20 mm square); multiple, individually focused charge particle beams; telecentric scanning of all beams simultaneously on a wafer for increased depth of field; and conjugate blanking of the charged particle beams for reduced beam blur. An electron gun is disclosed that uses microfabricated, field emission sources and a microfabricated aperture-deflector assembly. The aperture-deflector assembly acts as a perfect lens in focusing, steering and blanking a multipicity of electron beams through the back focal plane of an immersion lens located at the bottom of the column. Beam blanking can be performed using a gating signal to decrease beam blur during writing on the wafer.
    Type: Application
    Filed: July 29, 2003
    Publication date: June 24, 2004
    Applicants: Ion Diagnostics, Multibeam Systems, Inc., Motorola, Inc.
    Inventors: N. William Parker, Alan D. Brodie, George Xinsheng Guo, Edward M. Yin, Michael C. Matter
  • Patent number: 6617587
    Abstract: A charge particle optical column capable of being used in a high throughput, mutli-column, multi-beam electron beam lithography system is disclosed herein. The column has the following properties: purely electrostatic components; small column footprint (20 mm square); multiple, individually focused charge particle beams; telecentric scanning of all beams simultaneously on a wafer for increased depth of field; and conjugate blanking of the charged particle beams for reduced beam blur. An electron gun is disclosed that uses microfabricated field emission sources and a microfabricated aperture-deflector assembly. The aperture-deflector assembly acts as a perfect lens in focusing, steering and blanking a multipicity of electron beams through the back focal plane of an immersion lens located at the bottom of the column. Beam blanking can be performed using a gating signal to decrease beam blur during writing on the wafer.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: September 9, 2003
    Assignees: Multibeam Systems, Inc., Motorola, Inc.
    Inventors: N. William Parker, Alan D. Brodie, George Xinsheng Guo, Edward M. Yin, Michael C. Matter
  • Publication number: 20030085360
    Abstract: A charge particle optical column capable of being used in a high throughput, mutli-column, multi-beam electron beam lithography system is disclosed herein. The column has the following properties: purely electrostatic components; small column footprint (20 mm square); multiple, individually focused charge particle beams; telecentric scanning of all beams simultaneously on a wafer for increased depth of field; and conjugate blanking of the charged particle beams for reduced beam blur. An electron gun is disclosed that uses microfabricated field emission sources and a microfabricated aperture-deflector assembly. The aperture-deflector assembly acts as a perfect lens in focusing, steering and blanking a multipicity of electron beams through the back focal plane of an immersion lens located at the bottom of the column. Beam blanking can be performed using a gating signal to decrease beam blur during writing on the wafer.
    Type: Application
    Filed: September 12, 2002
    Publication date: May 8, 2003
    Applicant: Multibeam Systems, Inc.
    Inventors: N. William Parker, Alan D. Brodie, George Xinsheng Guo, Edward M. Yin, Michael C. Matter
  • Publication number: 20020153483
    Abstract: An electron beam column incorporating an asymmetrical detector optics assembly provides improved secondary electron collection. The electron beam column comprises an electron gun, an accelerating region, scanning deflectors, focusing lenses, secondary electron detectors and an asymmetrical detector optics assembly. The detector optics assembly comprises a field-free tube, asymmetrical with respect to the electron optical axis; the asymmetry can be introduced by offsetting the field-free tube from the electron optical axis or by chamfering the end of the tube. In other embodiments the detector optics assembly comprises a field-free tube and a voltage contrast plate, either or both of which are asymmetrical with respect to the electron optical axis.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 24, 2002
    Inventors: N. William Parker, Edward M. Yin, Frank Ching-Feng Tsai
  • Publication number: 20020015143
    Abstract: A multi-column electron beam inspection system is disclosed herein. The system is designed for electron beam inspection of semiconductor wafers with throughput high enough for in-line use. The system includes field emission electron sources, electrostatic electron optical columns, a wafer stage with six degrees of freedom of movement, and image storage and processing systems capable of handling multiple simultaneous image data streams. Each electron optical column is enhanced with an electron gun with redundant field emission sources, a voltage contrast plate to allow voltage contrast imaging of wafers, and an electron optical design for high efficiency secondary electron collection.
    Type: Application
    Filed: February 19, 2001
    Publication date: February 7, 2002
    Inventors: Edward M. Yin, Alan D. Brodie, N. William Parker, Frank Ching-Feng Tsai