Patents by Inventor Edward N. Bachelder

Edward N. Bachelder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8040361
    Abstract: Systems, methods and structures for combining virtual reality and real-time environment by combining captured real-time video data and real-time 3D environment renderings to create a fused, that is, combined environment, including capturing video imagery in RGB or HSV/HSV color coordinate systems and processing it to determine which areas should be made transparent, or have other color modifications made, based on sensed cultural features, electromagnetic spectrum values, and/or sensor line-of-sight, wherein the sensed features can also include electromagnetic radiation characteristics such as color, infra-red, ultra-violet light values, cultural features can include patterns of these characteristics, such as object recognition using edge detection, and whereby the processed image is then overlaid on, and fused into a 3D environment to combine the two data sources into a single scene to thereby create an effect whereby a user can look through predesignated areas or “windows” in the video image to see into a 3
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: October 18, 2011
    Assignee: Systems Technology, Inc.
    Inventors: Edward N. Bachelder, Noah Brickman
  • Patent number: 7976310
    Abstract: The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: July 12, 2011
    Assignee: Systems Technology, Inc.
    Inventors: Edward N. Bachelder, Dong-Chan Lee, Bimal L. Aponso
  • Publication number: 20100245387
    Abstract: Systems, methods and structures for combining virtual reality and real-time environment by combining captured real-time video data and real-time 3D environment renderings to create a fused, that is, combined environment, including capturing video imagery in RGB or HSV/HSV color coordinate systems and processing it to determine which areas should be made transparent, or have other color modifications made, based on sensed cultural features, electromagnetic spectrum values, and/or sensor line-of-sight, wherein the sensed features can also include electromagnetic radiation characteristics such as color, infra-red, ultra-violet light values, cultural features can include patterns of these characteristics, such as object recognition using edge detection, and whereby the processed image is then overlaid on, and fused into a 3D environment to combine the two data sources into a single scene to thereby create an effect whereby a user can look through predesignated areas or “windows” in the video image to see into a 3
    Type: Application
    Filed: January 20, 2009
    Publication date: September 30, 2010
    Inventors: Edward N. Bachelder, Noah Brickman
  • Publication number: 20100182340
    Abstract: Systems, methods and structures for combining virtual reality and real-time environment by combining captured real-time video data and real-time 3D environment renderings to create a fused, that is, combined environment, including capturing video imagery in RGB or HSV/HSV color coordinate systems and processing it to determine which areas should be made transparent, or have other color modifications made, based on sensed cultural features, electromagnetic spectrum values, and/or sensor line-of-sight, wherein the sensed features can also include electromagnetic radiation characteristics such as color, infra-red, ultra-violet light values, cultural features can include patterns of these characteristics, such as object recognition using edge detection, and whereby the processed image is then overlaid on, and fused into a 3D environment to combine the two data sources into a single scene to thereby create an effect whereby a user can look through predesignated areas or “windows” in the video image to see into a 3
    Type: Application
    Filed: January 19, 2009
    Publication date: July 22, 2010
    Inventors: Edward N. Bachelder, Noah Brickman
  • Patent number: 7479967
    Abstract: The present invention relates to a method and an apparatus for combining virtual reality and real-time environment. The present invention provides a system that combines captured real-time video data and real-time 3D environment rendering to create a fused (combined) environment. The system captures video imagery and processes it to determine which areas should be made transparent (or have other color modifications made), based on sensed cultural features and/or sensor line-of-sight. Sensed features can include electromagnetic radiation characteristics (i.e. color, infra-red, ultra-violet light). Cultural features can include patterns of these characteristics (i.e. object recognition using edge detection). This processed image is then overlaid on a 3D environment to combine the two data sources into a single scene. This creates an effect where a user can look through ‘windows’ in the video image into a 3D simulated world, and/or see other enhanced or reprocessed features of the captured image.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: January 20, 2009
    Assignee: Systems Technology Inc.
    Inventors: Edward N. Bachelder, Noah Brickman