Patents by Inventor Edward N. Cohen

Edward N. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170181274
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Application
    Filed: February 3, 2017
    Publication date: June 22, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Silvio DRAGONE, Michael J. FISHER, David C. LONG, Michael T. PEETS, William SANTIAGO-FERNANDEZ, Thomas WEISS
  • Patent number: 9661747
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: May 23, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Publication number: 20170108543
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes, for instance, a tamper-respondent sensor having at least one flexible layer and paired conductive lines disposed on the at least one flexible layer. The paired conductive lines form, at least in part, at least one tamper-detect network of the tamper-respondent sensor. The tamper-respondent electronic circuit structure further includes monitor circuitry electrically connected to the paired conductive lines to differentially monitor the paired conductive lines for a tamper event. In enhanced embodiments, multiple interconnect vias electrically connect to two or more layers of paired conductive lines and are disposed in an unfolded interconnect area of the tamper-respondent sensor when the sensor is operatively positioned about an electronic component or assembly to be protected.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 20, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Phillip Duane ISAACS
  • Publication number: 20170111998
    Abstract: Tamper-respondent assemblies and methods of fabrication are provided which include a tamper-respondent electronic circuit structure. The tamper-respondent electronic circuit structure includes, for instance, a tamper-respondent sensor having at least one flexible layer and paired conductive lines disposed on the at least one flexible layer. The paired conductive lines form, at least in part, at least one tamper-detect network of the tamper-respondent sensor. The tamper-respondent electronic circuit structure further includes monitor circuitry electrically connected to the paired conductive lines to differentially monitor the paired conductive lines for a tamper event. In enhanced embodiments, multiple interconnect vias electrically connect to two or more layers of paired conductive lines and are disposed in an unfolded interconnect area of the tamper-respondent sensor when the sensor is operatively positioned about an electronic component or assembly to be protected.
    Type: Application
    Filed: June 20, 2016
    Publication date: April 20, 2017
    Inventors: William L. BRODSKY, James A. BUSBY, Edward N. COHEN, Phillip Duane ISAACS
  • Patent number: 9554477
    Abstract: Tamper-respondent assemblies and fabrication methods are provided which incorporate enclosure to circuit board protection. The tamper-respondent assemblies include a circuit board, and an electronic enclosure mounted to the circuit board and facilitating enclosing at least one electronic component within a secure volume. A tamper-respondent electronic circuit structure facilitates defining the secure volume, and the tamper-respondent electronic circuit structure includes a tamper-respondent circuit. An adhesive is provided to secure, in part, the electronic enclosure to the circuit board. The adhesive contacts, at least in part, the tamper-respondent circuit so that an attempted separation of the electronic enclosure from the circuit board causes the adhesive to break the tamper-respondent circuit, facilitating detection of the separation by a monitor circuit of the tamper-respondent electronic circuit structure.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 24, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: William L. Brodsky, James A. Busby, Edward N. Cohen, Silvio Dragone, Michael J. Fisher, David C. Long, Michael T. Peets, William Santiago-Fernandez, Thomas Weiss
  • Patent number: 8539274
    Abstract: A method, apparatus, and computer program product for load shedding during an emergency power off event. In one embodiment, power is supplied from a main power source to a plurality of electrical loads within a device enclosure. Power loss is detected from the main power source. Upon detecting the power loss, at least one of the electrical loads is disconnected from a supplemental power source such that power to at least one remaining load connected to the supplemental power source is sustained by the supplementary power source.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Atkins, Edward N. Cohen, Philip M. Corcoran, William J. Petrowsky, Edward J. Seminaro
  • Patent number: 8352758
    Abstract: An energy management control method and controller reduce power supply current and/or subsystem cooling overhead that reduces system efficiency, may reduce system reliability and may increase ambient noise. Multiple device connectors are supplied from corresponding soft switches that are programmed to provide a current level that is sufficient to supply the maximum current for the device installed in the corresponding device connector. The current level may be determined from device information provided from the device during initialization, which may directly specify a maximum current requirement. Alternatively, the maximum current requirement can be determined from other device-identifying information such as a unique device identifier. As a result a guaranteed maximum current or power and power dissipation can be determined, and multiple power supplies and/or cooling devices such as air movement devices (AMDs) may be enabled, disabled or otherwise controlled accordingly.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: January 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Atkins, Edward N Cohen, Philip M Corcoran, Edward J Seminaro
  • Publication number: 20110231689
    Abstract: A method, apparatus, and computer program product for load shedding during an emergency power off event. In one embodiment, power is supplied from a main power source to a plurality of electrical loads within a device enclosure. Power loss is detected from the main power source. Upon detecting the power loss, at least one of the electrical loads is disconnected from a supplemental power source such that power to at least one remaining load connected to the supplemental power source is sustained by the supplementary power source.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Robert G. Atkins, Edward N. Cohen, Philip M. Corcoran, William J. Petrowsky, Edward J. Seminaro
  • Publication number: 20110231676
    Abstract: An energy management control method and controller reduce power supply current and/or subsystem cooling overhead that reduces system efficiency, may reduce system reliability and may increase ambient noise. Multiple device connectors are supplied from corresponding soft switches that are programmed to provide a current level that is sufficient to supply the maximum current for the device installed in the corresponding device connector. The current level may be determined from device information provided from the device during initialization, which may directly specify a maximum current requirement. Alternatively, the maximum current requirement can be determined from other device-identifying information such as a unique device identifier. As a result a guaranteed maximum current or power and power dissipation can be determined, and multiple power supplies and/or cooling devices such as air movement devices (AMDs) may be enabled, disabled or otherwise controlled accordingly.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Applicant: International Business Machines Corporation
    Inventors: Robert G. Atkins, Edward N. Cohen, Philip M. Corcoran, Edward J. Seminaro
  • Patent number: 6515917
    Abstract: A memory subsystem package has a memory controller interface ASIC (application specific integrated circuit) and a plurality of Memory modules. The ASIC has a bi-directional serial protocol i2C communication bus to off chip drivers for monitoring temperature and for adjusting the environment surrounding the package by controlling fans using fan switches and variable voltage controls. In addition there is provided an Alternating Current Built in Self Test (AC BIST) with variable data receiver voltage reference for performing high-speed AC memory subsystem self-test for that ASIC enabling writing of pseudo-random patterns to memory, reading them back and comparing the expected results at hardware speeds. Vref can be made to vary across its allowable range during AC self test to provide improved coverage. The system monitors Vddq during normal system operation using an ADC. The system varies Vref as a function of Vddq, using a combination of a DAC and ADC.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: February 4, 2003
    Assignee: International Business Machines Corporation
    Inventors: Kirk D. Lamb, Kevin C. Gower, Edward N. Cohen
  • Publication number: 20020145919
    Abstract: A memory subsystem package has a memory controller interface ASIC (application specific integrated circuit) and a plurality of Memory modules. The ASIC has a bi-directional serial protocol i2C communication bus to off chip drivers for monitoring temperature and for adjusting the environment surrounding the package by controlling fans using fan switches and variable voltage controls. In addition there is provided an Alternating Current Built in Self Test (AC BIST) with variable data receiver voltage reference for performing high-speed AC memory subsystem self-test for that ASIC enabling writing of pseudo-random patterns to memory, reading them back and comparing the expected results at hardware speeds. Vref can be made to vary across its allowable range during AC self test to provide improved coverage. The system monitors Vddq during normal system operation using an ADC. The system varies Vref as a function of vddq, using a combination of a DAC and ADC.
    Type: Application
    Filed: April 10, 2001
    Publication date: October 10, 2002
    Applicant: International Business Machines Corporation
    Inventors: Kirk D. Lamb, Kevin C. Gower, Edward N. Cohen