Patents by Inventor Edward Newman

Edward Newman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220317258
    Abstract: A component for diffusing light emitted by a laser source in a lidar system of an autonomous vehicle. The component comprises a component body. The component body comprises an aspheric lens shaped to direct laser illumination from a laser source in the lidar system to produce a particular illumination profile by directing a portion of the laser illumination to a part of a field of view of the lidar system. The component body further comprises an attachment structure configured for securing the component body to a printed circuit board of the lidar system. The attachment structure is further configured to space a central axis of the aspheric lens a distance from a central axis of the laser source in the lidar system.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Inventors: Kevin Edward Newman, Robert Vets, Joseph Matthew Robbins, Jake Kaiser
  • Patent number: 10996352
    Abstract: An imaging radiation detection system, useful in detecting and localizing radioactive materials, may include a large number of particle detectors stacked in a two-dimensional array. The array may include protruding detectors interleaved with recessed detectors, in which each detector is oriented in a different direction. The array may have a checkerboard-type arrangement of protruding and recessed detectors. Detection data from the recessed detectors may include a radiographic image indicating the distribution of radioactive sources in view. Embodiments with high detection efficiency and large field of view can rapidly detect and localize even well-shielded threat sources at substantial distances.
    Type: Grant
    Filed: April 28, 2019
    Date of Patent: May 4, 2021
    Inventor: David Edward Newman
  • Patent number: 10884144
    Abstract: A large-area directional radiation detection system may include a large number of slab-shaped detectors stacked side-by-side comprising alternate long and short detectors, where the long detectors are longitudinally longer than the short detectors. The long detectors may collimate or restrict the lateral field of view of the short detectors, so that a particular short detector that is aligned with the source has an unobstructed view of the source. By comparing detection distributions in the long and short detectors, a processor can determine the angular position and distance of a source. The high detection efficiency and large solid angle of the detector array may enable rapid detection of even well-shielded threat sources at substantial distances, while simultaneously determining the positions of any sources detected.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: January 5, 2021
    Inventor: David Edward Newman
  • Publication number: 20200400857
    Abstract: An imaging radiation detection system, useful in detecting and localizing radioactive materials, may include a large number of particle detectors stacked in a two-dimensional array. The array may include protruding detectors interleaved with recessed detectors, in which each detector is oriented in a different direction. The array may have a checkerboard-type arrangement of protruding and recessed detectors. Detection data from the recessed detectors may include a radiographic image indicating the distribution of radioactive sources in view. Embodiments with high detection efficiency and large field of view can rapidly detect and localize even well-shielded threat sources at substantial distances.
    Type: Application
    Filed: April 28, 2019
    Publication date: December 24, 2020
    Inventor: David Edward Newman
  • Patent number: 10859716
    Abstract: A device for determining the location of a source of radiation, based on data acquired at a single orientation of the device without iteration or rotations. Embodiments may comprise two side detector panels positioned closely parallel to each other and adjacent to each other, plus a front detector positioned orthogonally in front of the side detectors, without collimators or shields. The various detectors have contrasting angular sensitivities, so that a predetermined angular correlation function can determine the sign and magnitude of the source angle according to the detection rates of the front and side detectors. Embodiments enable rapid detection and localization of nuclear and radiological weapon materials for greatly improved inspection of cargo containers and personnel. Advanced detectors such as those disclosed herein will be needed in the coming decades to protect against clandestine weapon transport.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: December 8, 2020
    Inventor: David Edward Newman
  • Patent number: 10838085
    Abstract: Disclosed is a directional gamma ray or neutron detector system that locates a radioactive source both horizontally and vertically. In some embodiments, the system comprises four “side” detectors arrayed around a detector axis, and an orthogonal “front” detector mounted frontward of the side detectors. Embodiments can calculate the azimuthal angle of the source based on the detection rates of the side detectors, while the polar angle of the source may be calculated from the front detector rate using a predetermined angular correlation function, thereby localizing the source from a single data set without iterative rotations. In applications such as hand-held survey meters, walk-through portals, vehicle cargo inspection stations, and mobile area scanners, embodiments enable rapid detection and precise localization of clandestine nuclear and radiological weapons.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: November 17, 2020
    Inventor: David Edward Newman
  • Patent number: 10816679
    Abstract: A large-area directional radiation detection system may include a large number of slab-shaped detectors stacked side-by-side and alternately displaced frontward and rearward, thereby providing a longitudinally-staggered array of protruding and recessed detectors. The protruding detectors collimate or restrict the lateral field of view of the recessed detectors, thereby enabling the angular position and distance of a source to be determined. The high detection efficiency and large solid angle of the staggered detector array enable rapid detection of even well-shielded threat sources at substantial distances, while simultaneously determining the positions of any sources detected. This detector array will be essential for guarding against clandestine delivery of nuclear materials in the coming century.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: October 27, 2020
    Inventor: David Edward Newman
  • Patent number: 10802161
    Abstract: Disclosed is a directional gamma ray or neutron detector that locates a source both horizontally and vertically. In some embodiments, the detector comprises four “rod” scintillators around a shield, and an orthogonal “panel” scintillator mounted frontward of the rod scintillators. The azimuthal angle of the source may be calculated according to the detection rates of the rod scintillators, while the polar angle of the source may be calculated from the panel scintillator rate using a predetermined angular correlation function. Thus, the exact location of the source can be found from a single data set without iterative rotations. Embodiments of the detector enable rapid detection and precise localization of clandestine nuclear and radiological weapons in applications ranging from hand-held survey meters and walk-through portals, to vehicle cargo inspection stations and mobile area scanners. Such detectors are needed to detect clandestine nuclear weapons worldwide.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: October 13, 2020
    Inventor: David Edward Newman
  • Publication number: 20200309966
    Abstract: Disclosed is a directional gamma ray or neutron detector that locates a source both horizontally and vertically. In some embodiments, the detector comprises four “rod” scintillators around a shield, and an orthogonal “panel” scintillator mounted frontward of the rod scintillators. The azimuthal angle of the source may be calculated according to the detection rates of the rod scintillators, while the polar angle of the source may be calculated from the panel scintillator rate using a predetermined angular correlation function. Thus, the exact location of the source can be found from a single data set without iterative rotations. Embodiments of the detector enable rapid detection and precise localization of clandestine nuclear and radiological weapons in applications ranging from hand-held survey meters and walk-through portals, to vehicle cargo inspection stations and mobile area scanners. Such detectors are needed to detect clandestine nuclear weapons worldwide.
    Type: Application
    Filed: May 9, 2019
    Publication date: October 1, 2020
    Inventor: David Edward Newman
  • Patent number: 10775514
    Abstract: A system of particle detectors can determine the location of a source without rotations or iterations. Embodiments of the system may comprise a middle detector flanked by two shield plates, with two side detector panels exterior to the shields. The middle detector may be positioned toward the front and orthogonal to the side detectors. By comparing a ratio of the detector data to a predetermined angular correlation function, the system can determine both the sign and magnitude of the source angle in real-time. Embodiments of the system can rapidly and automatically localize sources including nuclear and radiological weapons materials, whether in vehicles or cargo containers, and can provide improved sensitivity in walk-through personnel portal applications, enable enhanced detection of hidden weapons by a mobile area scanner, and enable a hand-held survey meter that indicates the radiation level as well as the location of the source of radiation.
    Type: Grant
    Filed: December 29, 2019
    Date of Patent: September 15, 2020
    Inventor: David Edward Newman
  • Publication number: 20200284925
    Abstract: Disclosed is a directional gamma ray or neutron detector system that locates a radioactive source both horizontally and vertically. In some embodiments, the system comprises four “side” detectors arrayed around a detector axis, and an orthogonal “front” detector mounted frontward of the side detectors. Embodiments can calculate the azimuthal angle of the source based on the detection rates of the side detectors, while the polar angle of the source may be calculated from the front detector rate using a predetermined angular correlation function, thereby localizing the source from a single data set without iterative rotations. In applications such as hand-held survey meters, walk-through portals, vehicle cargo inspection stations, and mobile area scanners, embodiments enable rapid detection and precise localization of clandestine nuclear and radiological weapons.
    Type: Application
    Filed: March 26, 2020
    Publication date: September 10, 2020
    Inventor: David Edward Newman
  • Publication number: 20200271797
    Abstract: A large-area directional radiation detection system may include a large number of slab-shaped detectors stacked side-by-side and alternately displaced frontward and rearward, thereby providing a longitudinally-staggered array of protruding and recessed detectors. The protruding detectors collimate or restrict the lateral field of view of the recessed detectors, thereby enabling the angular position and distance of a source to be determined. The high detection efficiency and large solid angle of the staggered detector array enable rapid detection of even well-shielded threat sources at substantial distances, while simultaneously determining the positions of any sources detected. This detector array will be essential for guarding against clandestine delivery of nuclear materials in the coming century.
    Type: Application
    Filed: November 11, 2019
    Publication date: August 27, 2020
    Inventor: David Edward Newman
  • Publication number: 20200241152
    Abstract: A system of particle detectors can determine the location of a source without rotations or iterations. Embodiments of the system may comprise a middle detector flanked by two shield plates, with two side detector panels exterior to the shields. The middle detector may be positioned toward the front and orthogonal to the side detectors. By comparing a ratio of the detector data to a predetermined angular correlation function, the system can determine both the sign and magnitude of the source angle in real-time. Embodiments of the system can rapidly and automatically localize sources including nuclear and radiological weapons materials, whether in vehicles or cargo containers, and can provide improved sensitivity in walk-through personnel portal applications, enable enhanced detection of hidden weapons by a mobile area scanner, and enable a hand-held survey meter that indicates the radiation level as well as the location of the source of radiation.
    Type: Application
    Filed: December 29, 2019
    Publication date: July 30, 2020
    Inventor: David Edward Newman
  • Publication number: 20200225372
    Abstract: A large-area directional radiation detection system may include a large number of slab-shaped detectors stacked side-by-side comprising alternate long and short detectors, where the long detectors are longitudinally longer than the short detectors. The long detectors may collimate or restrict the lateral field of view of the short detectors, so that a particular short detector that is aligned with the source has an unobstructed view of the source. By comparing detection distributions in the long and short detectors, a processor can determine the angular position and distance of a source. The high detection efficiency and large solid angle of the detector array may enable rapid detection of even well-shielded threat sources at substantial distances, while simultaneously determining the positions of any sources detected.
    Type: Application
    Filed: January 31, 2020
    Publication date: July 16, 2020
    Inventor: David Edward Newman
  • Publication number: 20200142081
    Abstract: A device for determining the location of a source of radiation, based on data acquired at a single orientation of the device without iteration or rotations. Embodiments may comprise two side detector panels positioned closely parallel to each other and adjacent to each other, plus a front detector positioned orthogonally in front of the side detectors, without collimators or shields. The various detectors have contrasting angular sensitivities, so that a predetermined angular correlation function can determine the sign and magnitude of the source angle according to the detection rates of the front and side detectors. Embodiments enable rapid detection and localization of nuclear and radiological weapon materials for greatly improved inspection of cargo containers and personnel. Advanced detectors such as those disclosed herein will be needed in the coming decades to protect against clandestine weapon transport.
    Type: Application
    Filed: September 12, 2019
    Publication date: May 7, 2020
    Inventor: David Edward Newman
  • Publication number: 20200110184
    Abstract: A neutron detector that indicates the direction toward a neutron source. The detector is a proton-recoil type of detector, in which two different scintillators are positioned on both sides of a hydrogenous target. Proton recoil signals from the two scintillators indicate whether neutrons arrive from the left, right, or center relative to the detector alignment. Surprisingly high precision can be obtained by orienting the detector so that the counting rates in the two scintillators are equal, at which point the target layer is directly aligned with the source. Disclosed are thick and thin target configurations, versions for discriminating pulses from the two scintillators, options for assembling a multi-detector stack and array, and multiple analysis procedures for optimally locating the neutron source.
    Type: Application
    Filed: July 28, 2019
    Publication date: April 9, 2020
    Inventor: David Edward Newman
  • Patent number: 10605932
    Abstract: Disclosed is a directional gamma ray or neutron detector system that locates a radioactive source both horizontally and vertically. In some embodiments, the system comprises four “side” detectors arrayed around a detector axis, and an orthogonal “front” detector mounted frontward of the side detectors. Embodiments can calculate the azimuthal angle of the source based on the detection rates of the side detectors, while the polar angle of the source may be calculated from the front detector rate using a predetermined angular correlation function, thereby localizing the source from a single data set without iterative rotations. In applications such as hand-held survey meters, walk-through portals, vehicle cargo inspection stations, and mobile area scanners, embodiments enable rapid detection and precise localization of clandestine nuclear and radiological weapons.
    Type: Grant
    Filed: April 6, 2019
    Date of Patent: March 31, 2020
    Inventor: David Edward Newman
  • Patent number: 10591614
    Abstract: A large-area directional radiation detection system useful in detecting shielded radiological weapons may include a large number of prism-shaped detectors stacked in a two-dimensional array of particle detectors in which alternate detectors are displaced frontward and rearward in, for example, a checkerboard-type arrangement of detectors. If a source of radiation is in front of the array, the frontward detectors act as collimators for the rearward detectors, thereby producing a narrow detection peak among the rearward detectors. The lateral position of the detection peak indicates the lateral position of the source, and the width of the detection peak indicates the distance of the source from the detector array, thereby providing a three-dimensional determination of the source location.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: March 17, 2020
    Inventor: David Edward Newman
  • Patent number: 10591621
    Abstract: A neutron detector that indicates the direction toward a neutron source. The detector is a proton-recoil type of detector, in which two different scintillators are positioned on both sides of a hydrogenous target. Proton recoil signals from the two scintillators indicate whether neutrons arrive from the left, right, or center relative to the detector alignment. Surprisingly high precision can be obtained by orienting the detector so that the counting rates in the two scintillators are equal, at which point the target layer is directly aligned with the source. Disclosed are thick and thin target configurations, versions for discriminating pulses from the two scintillators, options for assembling a multi-detector stack and array, and multiple analysis procedures for optimally locating the neutron source.
    Type: Grant
    Filed: July 28, 2019
    Date of Patent: March 17, 2020
    Inventor: David Edward Newman
  • Patent number: 10564302
    Abstract: A device for determining the location of a source of radiation, based on data acquired at a single orientation of the device without iteration or rotations. Embodiments may comprise two side detector panels flanking a shield layer, plus a front detector positioned orthogonally in front of the side detectors. The various detectors thereby have contrasting angular sensitivities, so that a predetermined angular correlation function can determine the sign and magnitude of the source angle according to the detection rates. Rapid detection and localization of nuclear and radiological weapon materials enables greatly improved inspection of cargo containers and personnel. Advanced detectors such as those disclosed herein will be needed in the coming decades to protect against clandestine weapon transport.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 18, 2020
    Inventor: David Edward Newman