Patents by Inventor Edward P. Maciejewski

Edward P. Maciejewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9595518
    Abstract: Fabrication methods and structure include: providing a wafer with at least one fin extended above a substrate in a first region, and at least one fin extended above the substrate in a second region of the wafer; forming a gate structure extending at least partially over the at least one fin to define a semiconductor device region in the first region; implanting a dopant into the at least one fin in the first region and into the at least one fin in the second region of the wafer, where the implanting of the dopant into the at least one fin of the second region modulates a physical property of the at least one fin to define a resistor device region in the second region; and disposing a conductive material at least partially over the at least one fin in the first region and over the at least one fin in the second region of the wafer, in part, to form a source and drain contact in the first region, and a fin-type metal-semiconductor resistor in the second region.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 14, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Anthony I-Chih Chou, Chengwen Pei, Edward P. Maciejewski, Ning Zhan
  • Patent number: 9437496
    Abstract: A semiconductor device such as a FinFET includes a plurality of fins formed upon a substrate and a gate covering a portion of the fins. Diamond-shaped volumes are formed on the sidewalls of the fins by epitaxial growth which may be limited to avoid merging of the volumes or where the epitaxy volumes have merged. Because of the difficulties in managing merging of the diamond-shaped volumes, a controlled merger of the diamond-shaped volumes includes depositing an amorphous semiconductor material upon the diamond-shaped volumes and a crystallization process to crystallize the deposited semiconductor material on the diamond-shaped volumes to fabricate controllable and uniformly merged source drain.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: September 6, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Michael P. Chudzik, Brian J. Greene, Edward P. Maciejewski, Kevin McStay, Shreesh Narasimha, Chengwen Pei, Werner A. Rausch
  • Patent number: 9431340
    Abstract: The present disclosure generally relates to a wiring structure for a fuse component and corresponding methods of fabrication. A wiring structure for a fuse component according to the present disclosure can include: a first electrical terminal embedded within a doped conductive layer, the doped conductive layer being positioned between two insulator layers of an integrated circuit (IC) structure; a dielectric liner positioned between the first electrical terminal and the doped conductive layer; a second electrical terminal embedded within the doped conductive layer; wherein each of the first electrical terminal and the second electrical terminal are further embedded in one of the two insulator layers, and the dielectric liner is configured to degrade upon becoming electrically charged.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: August 30, 2016
    Assignee: International Business Machines Corporation
    Inventors: Toshiaki Kirihata, Edward P. Maciejewski, Subramanian S. Iyer, Chengwen Pei, Deepal U. Wehella-Gamage
  • Patent number: 9431339
    Abstract: The present disclosure generally relates to a wiring structure for a fuse component and corresponding methods of fabrication. A wiring structure for a fuse component according to the present disclosure can include: a first electrical terminal embedded within a doped conductive layer, the doped conductive layer being positioned between two insulator layers of an integrated circuit (IC) structure; a dielectric liner positioned between the first electrical terminal and the doped conductive layer; a second electrical terminal embedded within the doped conductive layer; wherein each of the first electrical terminal and the second electrical terminal are further embedded in one of the two insulator layers, and the dielectric liner is configured to degrade upon becoming electrically charged.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: August 30, 2016
    Assignee: International Business Machines Corporation
    Inventors: Toshiaki Kirihata, Edward P. Maciejewski, Subramanian S. Iyer, Chengwen Pei, Deepal U. Wehella-Gamage
  • Publication number: 20160163642
    Abstract: The present disclosure generally relates to a wiring structure for a fuse component and corresponding methods of fabrication. A wiring structure for a fuse component according to the present disclosure can include: a first electrical terminal embedded within a doped conductive layer, the doped conductive layer being positioned between two insulator layers of an integrated circuit (IC) structure; a dielectric liner positioned between the first electrical terminal and the doped conductive layer; a second electrical terminal embedded within the doped conductive layer; wherein each of the first electrical terminal and the second electrical terminal are further embedded in one of the two insulator layers, and the dielectric liner is configured to degrade upon becoming electrically charged.
    Type: Application
    Filed: October 6, 2015
    Publication date: June 9, 2016
    Inventors: Toshiaki Kirihata, Edward P. Maciejewski, Subramanian S. Iyer, Chengwen Pei, Deepal U. Wehella-Gamage
  • Patent number: 9209200
    Abstract: A method for forming a semiconductor device includes forming gate stacks on a crystalline semiconductor layer; depositing a spacer layer over a top and sidewalls of the gate stacks; recessing the semiconductor layer between the gates stacks; and depositing a non-conformal layer over the gates stacks and within the recesses such that the non-conformal layer forms a pinch point over the recesses. The non-conformal layer is etched at a bottom of the recesses through the pinch point to expose the semiconductor layer. Dopant species are implanted at the bottom of the recesses through the pinch point in the semiconductor layer. The non-conformal layer is stripped, and source and drain material is grown in the recesses. The dopant species are activated to form PN junctions to act as a junction butt between portions of the semiconductor layer.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: December 8, 2015
    Assignee: GLOBALFOUNDRIES INC
    Inventors: Edward P. Maciejewski, Chengwen Pei, Gan Wang, Geng Wang
  • Publication number: 20150333145
    Abstract: Embodiments of the present invention provide a finFET and method of fabrication to achieve advantages of both merged and unmerged fins. A first step of epitaxy is performed with either partial diamond or full diamond growth. This is followed by a second step of deposition of a semiconductor cap region on the finFET source/drain area using a directional deposition process, followed by an anneal to perform Solid Phase Epitaxy or poly recrystalization. As a result, the fins remain unmerged, but the epitaxial volume is increased to provide reduced contact resistance. Embodiments of the present invention allow a narrower fin pitch, which enables increased circuit density on an integrated circuit.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 19, 2015
    Applicant: International Business Machines Corporation
    Inventors: Michael P. Chudzik, Brian J. Greene, Edward P. Maciejewski, Kevin McStay, Shreesh Narasimha, Chengwen Pei, Werner A. Rausch
  • Publication number: 20150235945
    Abstract: The present disclosure generally relates to a wiring structure for a fuse component and corresponding methods of fabrication. A wiring structure for a fuse component according to the present disclosure can include: a first electrical terminal embedded within a doped conductive layer, the doped conductive layer being positioned between two insulator layers of an integrated circuit (IC) structure; a dielectric liner positioned between the first electrical terminal and the doped conductive layer; a second electrical terminal embedded within the doped conductive layer; wherein each of the first electrical terminal and the second electrical terminal are further embedded in one of the two insulator layers, and the dielectric liner is configured to degrade upon becoming electrically charged.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: International Business Machines Corporation
    Inventors: Toshiaki Kirihata, Edward P. Maciejewski, Subramanian S. Iyer, Chengwen Pei, Deepal U. Wehella-Gamage
  • Patent number: 9064972
    Abstract: A method of fabricating a semiconductor structure provided with a plurality of gated-diodes having a silicided anode (p-doped region) and cathode (n-doped region) and a high-K gate stack made of non-silicided gate material, the gated-diodes being adjacent to FETs, each of which having a silicided source, a silicided drain and a silicided HiK gate stack. The semiconductor structure eliminates a cap removal RIE in a gate first High-K metal gate flow from the region of the gated-diode. The lack of silicide and the presence of a nitride barrier on the gate of the diode are preferably made during the gate first process flow. The absence of the cap removal RIE is beneficial in that diffusions of the diode are not subjected to the cap removal RIE, which avoids damage and allows retaining its highly ideal junction characteristics.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: June 23, 2015
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Edward P. Maciejewski, Shreesh Narasimha, Dustin K. Slisher
  • Publication number: 20150108571
    Abstract: A method for forming a semiconductor device includes forming gate stacks on a crystalline semiconductor layer; depositing a spacer layer over a top and sidewalls of the gate stacks; recessing the semiconductor layer between the gates stacks; and depositing a non-conformal layer over the gates stacks and within the recesses such that the non-conformal layer forms a pinch point over the recesses. The non-conformal layer is etched at a bottom of the recesses through the pinch point to expose the semiconductor layer. Dopant species are implanted at the bottom of the recesses through the pinch point in the semiconductor layer. The non-conformal layer is stripped, and source and drain material is grown in the recesses. The dopant species are activated to form PN junctions to act as a junction butt between portions of the semiconductor layer.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Edward P. Maciejewski, Chengwen Pei, Gan Wang, Geng Wang
  • Patent number: 8980720
    Abstract: An improved eFuse and method of fabrication is disclosed. A cavity is formed in a substrate, which results in a polysilicon line having an increased depth in the area of the fuse, while having a reduced depth in areas outside of the fuse. The increased depth reduces the chance of the polysilicon line entering the fully silicided state. The cavity may be formed with a wet or dry etch.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Edward P. Maciejewski, Dustin Kenneth Slisher, Stefan Zollner
  • Patent number: 8912626
    Abstract: An improved eFuse and method of fabrication is disclosed. A cavity is formed in a substrate, which results in a polysilicon line having an increased depth in the area of the fuse, while having a reduced depth in areas outside of the fuse. The increased depth reduces the chance of the polysilicon line entering the fully silicided state. The cavity may be formed with a wet or dry etch.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Edward P. Maciejewski, Dustin Kenneth Slisher, Stefan Zollner
  • Publication number: 20140357045
    Abstract: An improved eFuse and method of fabrication is disclosed. A cavity is formed in a substrate, which results in a polysilicon line having an increased depth in the area of the fuse, while having a reduced depth in areas outside of the fuse. The increased depth reduces the chance of the polysilicon line entering the fully silicided state. The cavity may be formed with a wet or dry etch.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Edward P. Maciejewski, Dustin Kenneth Slisher, Stefan Zollner
  • Patent number: 8796771
    Abstract: A method of forming a transistor device includes implanting a diffusion inhibiting species in a semiconductor-on-insulator substrate comprising a bulk substrate, a buried insulator layer, and a semiconductor-on-insulator layer, the semiconductor-on-insulator substrate having one or more gate structures formed thereon such that the diffusion inhibiting species is disposed in portions of the semiconductor-on-insulator layer corresponding to a channel region, and disposed in portions of the buried insulator layer corresponding to source and drain regions. A transistor dopant species is introduced in the source and drain regions. An anneal is performed so as to diffuse the transistor dopant species in a substantially vertical direction while substantially preventing lateral diffusion of the transistor dopant species into the channel region.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Jeffrey B. Johnson, Qingqing Liang, Edward P. Maciejewski
  • Publication number: 20140206160
    Abstract: A method of fabricating a semiconductor structure provided with a plurality of gated-diodes having a silicided anode (p-doped region) and cathode (n-doped region) and a high-K gate stack made of non-silicided gate material, the gated-diodes being adjacent to FETs, each of which having a silicided source, a silicided drain and a silicided HiK gate stack. The semiconductor structure eliminates a cap removal RIE in a gate first High-K metal gate flow from the region of the gated-diode. The lack of silicide and the presence of a nitride barrier on the gate of the diode are preferably made during the gate first process flow. The absence of the cap removal RIE is beneficial in that diffusions of the diode are not subjected to the cap removal RIE, which avoids damage and allows retaining its highly ideal junction characteristics.
    Type: Application
    Filed: March 20, 2014
    Publication date: July 24, 2014
    Inventors: Anthony I. Chou, Arvind Kumar, Edward P. Maciejewski, Shreesh Narasimha, Dustin K. Slisher
  • Patent number: 8779551
    Abstract: A semiconductor structure provided with a plurality of gated-diodes having a silicided anode (p-doped region) and cathode (n-doped region) and a high-K gate stack made of non-silicided gate material, the gated-diodes being adjacent to FETs, each of which having a silicided source, a silicided drain and a silicided HiK gate stack. The semiconductor structure eliminates a cap removal RIE in a gate first High-K metal gate flow from the region of the gated-diode. The lack of silicide and the presence of a nitride barrier on the gate of the diode are preferably made during the gate first process flow. The absence of the cap removal RIE is beneficial in that diffusions of the diode are not subjected to the cap removal RIE, which avoids damage and allows retaining its highly ideal junction characteristics.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: July 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Anthony I. Chou, Arvind Kumar, Edward P. Maciejewski, Shreesh Narasimha, Dustin K. Slisher
  • Publication number: 20140042541
    Abstract: A method of forming a transistor device includes implanting a diffusion inhibiting species in a semiconductor-on-insulator substrate comprising a bulk substrate, a buried insulator layer, and a semiconductor-on-insulator layer, the semiconductor-on-insulator substrate having one or more gate structures formed thereon such that the diffusion inhibiting species is disposed in portions of the semiconductor-on-insulator layer corresponding to a channel region, and disposed in portions of the buried insulator layer corresponding to source and drain regions. A transistor dopant species is introduced in the source and drain regions. An anneal is performed so as to diffuse the transistor dopant species in a substantially vertical direction while substantially preventing lateral diffusion of the transistor dopant species into the channel region.
    Type: Application
    Filed: October 15, 2013
    Publication date: February 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Brian J. Greene, Jeffrey B. Johnson, Qingqing Liang, Edward P. Maciejewski
  • Patent number: 8633096
    Abstract: A method of forming a transistor device includes implanting a diffusion inhibiting species in a semiconductor-on-insulator substrate comprising a bulk substrate, a buried insulator layer, and a semiconductor-on-insulator layer, the semiconductor-on-insulator substrate having one or more gate structures formed thereon such that the diffusion inhibiting species is disposed in portions of the semiconductor-on-insulator layer corresponding to a channel region, and disposed in portions of the buried insulator layer corresponding to source and drain regions. A transistor dopant species is introduced in the source and drain regions. An anneal is performed so as to diffuse the transistor dopant species in a substantially vertical direction while substantially preventing lateral diffusion of the transistor dopant species into the channel region.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Brian J. Greene, Jeffrey B. Johnson, Qingqing Liang, Edward P. Maciejewski
  • Publication number: 20130328124
    Abstract: A semiconductor structure provided with a plurality of gated-diodes having a silicided anode (p-doped region) and cathode (n-doped region) and a high-K gate stack made of non-silicided gate material, the gated-diodes being adjacent to FETs, each of which having a silicided source, a silicided drain and a silicided HiK gate stack. The semiconductor structure eliminates a cap removal RIE in a gate first High-K metal gate flow from the region of the gated-diode. The lack of silicide and the presence of a nitride barrier on the gate of the diode are preferably made during the gate first process flow. The absence of the cap removal RIE is beneficial in that diffusions of the diode are not subjected to the cap removal RIE, which avoids damage and allows retaining its highly ideal junction characteristics.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 12, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Edward P. Maciejewski, Shreesh Narasimha, Dustin K. Slisher
  • Patent number: 8513085
    Abstract: Threshold voltage controlled semiconductor structures are provided in which a conformal nitride-containing liner is located on at least exposed sidewalls of a patterned gate dielectric material having a dielectric constant of greater than silicon oxide. The conformal nitride-containing liner is a thin layer that is formed using a low temperature (less than 500° C.) nitridation process.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Brian J. Greene, Effendi Leobandung, Qingqing Liang, Edward P. Maciejewski, Yanfeng Wang