Patents by Inventor Edward R. Dowski

Edward R. Dowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160350445
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Edward R. Dowski, JR., Paulo E.X. Silvieri, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Goran M. Rauker, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Kenneth Ashley Macon, Gary L. Duerksen
  • Publication number: 20160341540
    Abstract: An angular localization system for determining an object's location includes a signal processor and three channels have a respective first, second, and third photodetector. The first channel images a first portion of an optical signal from which the first photodetector generates a first electrical signal. The second channel images a second portion of the optical signal onto a slow-varying optical mask having a strictly monotonic transmissivity along a dimension x. The second photodetector converts the second portion into a second electrical signal. The third channel images a third portion of the optical signal onto a fast-varying optical mask having a spatially-varying transmissivity having a same value at more than one value of x. The third photodetector converts the third portion into a third electrical signal. The signal processor is configured to determine, from each electrical signal, a respective signal amplitude, and determine the location parameter by comparing the signal amplitudes.
    Type: Application
    Filed: May 23, 2016
    Publication date: November 24, 2016
    Inventors: Edward R. Dowski, JR., Gregory Johnson
  • Patent number: 9471994
    Abstract: Systems and methods for generating images of an object having a known object velocity include imaging electromagnetic radiation from the object onto a sensor array of an imaging system, adjusting at least one of a shutter rate and a shutter direction of the imaging system in accordance with an image velocity of the image across the sensor array, and sampling output of the sensor array in accordance with the shutter rate and the shutter direction to generate the images. Systems and methods for generating images of an object moving through a scene include a first imaging system generating image data samples of the scene, a post processing system that analyzes the samples to determine when the object is present in the scene, and one or more second imaging systems triggered by the post processing system to generate one or more second image data samples of the object.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: October 18, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Kenneth S. Kubala, Hans Brandon Wach
  • Patent number: 9418193
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: August 16, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Paulo E. X. Silvieri, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Gary L. Duerksen
  • Publication number: 20150219437
    Abstract: A coded localization system includes a plurality of optical channels arranged to cooperatively image at least one object onto a plurality of detectors. Each of the channels includes a localization code that is different from any other localization code in other channels, to modify electromagnetic energy passing therethrough. Output digital images from the detectors are processable to determine sub-pixel localization of the object onto the detectors, such that a location of the object is determined more accurately than by detector geometry alone. Another coded localization system includes a plurality of optical channels arranged to cooperatively image partially polarized data onto a plurality of pixels. Each of the channels includes a polarization code that is different from any other polarization code in other channels to uniquely polarize electromagnetic energy passing therethrough. Output digital images from the detectors are processable, to determine a polarization pattern for a user of the system.
    Type: Application
    Filed: January 3, 2013
    Publication date: August 6, 2015
    Inventors: Edward R. Dowski, Bradley Sissom, Gregory Johnson
  • Publication number: 20140220713
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Application
    Filed: December 2, 2013
    Publication date: August 7, 2014
    Applicant: Omnivision Technologies Inc.
    Inventors: Edward R. Dowski, JR., Paulo E.X. Silvieri, George C. Bames, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Donald Combs, Howard E. Rhodes, James He, John J. Mader, Goran M. Rauker, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp, Kenneth Ashley Macon, Gary L. Duerksen
  • Publication number: 20140204360
    Abstract: In an embodiment, a guidance system determines a location parameter of an object, and includes: at least one oscillating element located at the object for emitting modulated optical radiation; at least two mutually distinct signal-modifying electro-optical sensors, each of the electro-optical sensors having a detector and a demodulator for generating a demodulated electrical signal in response to detection of at least a portion of the modulated optical radiation; and a processor for determining the location parameter from the demodulated electrical signals. In another embodiment, a guidance system has aberration-corrected imaging and includes: a plurality of electro-optical sensors sharing a field of view and mutually distinctly providing a respective plurality of altered images therefrom; and an image generator module for linearly and non-linearly processing spatial frequency properties of the plurality of altered images to synthesize an aberration-corrected image for the imaging system.
    Type: Application
    Filed: January 28, 2014
    Publication date: July 24, 2014
    Applicant: ASCENTIA IMAGING, INC.
    Inventors: Edward R. Dowski, Jr., Gregory Johnson
  • Patent number: 8760516
    Abstract: A task-based imaging system for obtaining data regarding a scene for use in a task includes an image data capturing arrangement for (a) imaging a wavefront of electromagnetic energy from the scene to an intermediate image over a range of spatial frequencies, (b) modifying phase of the wavefront, (c) detecting the intermediate image, and (d) generating image data over the range of spatial frequencies. The task-based imaging system also includes an image data processing arrangement for processing the image data and performing the task. The image data capturing and image data processing arrangements cooperate so that signal-to-noise ratio (SNR) of the task-based imaging system is greater than SNR of the task-based imaging system without phase modification of the wavefront over the range of spatial frequencies.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 24, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Paulo E. X. Silveira, Ramkumar Narayanswamy, Robert H. Cormack, Gregory E. Johnson, Edward R. Dowski, Jr.
  • Patent number: 8736699
    Abstract: An imaging system includes optics for forming an optical image, that provide a first region in the optical image that is characterized by a first range of best focus and a second region in the optical image that is characterized by a second range of best focus The first and second ranges correspond to object distance ranges that are discontiguous A sensor array converts the optical image to a data stream, and a digital signal processor processes the data stream to generate a final image.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: May 27, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Kennegth S. Kubala, Inga Tamayo, Dennis W. Dobbs, Satoru Tachihara, Edwin Penniman
  • Patent number: 8717456
    Abstract: Systems and methods include optics having one or more phase modifying elements that modify wavefront phase to introduce image attributes into an optical image. A detector converts the optical image to electronic data while maintaining the image attributes. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets, and independently processes the data sets to form processed electronic data. The processing may optionally be nonlinear. Other imaging systems and methods include optics having one or more phase modifying elements that modify wavefront phase to form an optical image. A detector generates electronic data having one or more image attributes that are dependent on characteristics of the phase modifying elements and/or the detector. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets and independently processes the data sets to form processed electronic data.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: May 6, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gregory E. Johnson, Edward R. Dowski, Jr., Kenneth S Kubala, Ramkumar Narayanswamy, Hans Brandon Wach
  • Publication number: 20140078314
    Abstract: Systems and methods for generating images of an object having a known object velocity include imaging electromagnetic radiation from the object onto a sensor array of an imaging system, adjusting at least one of a shutter rate and a shutter direction of the imaging system in accordance with an image velocity of the image across the sensor array, and sampling output of the sensor array in accordance with the shutter rate and the shutter direction to generate the images. Systems and methods for generating images of an object moving through a scene include a first imaging system generating image data samples of the scene, a post processing system that analyzes the samples to determine when the object is present in the scene, and one or more second imaging systems triggered by the post processing system to generate one or more second image data samples of the object.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 20, 2014
    Applicant: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Kenneth S. Kubala, Hans Brandon Wach
  • Publication number: 20130321605
    Abstract: A method of one aspect may include receiving an encapsulated image acquisition device having an internal memory. The internal memory may store images acquired by the encapsulated image acquisition device. The images may be transferred from the internal memory to an external memory that is external to the encapsulated image acquisition device. An image analysis station may be selected from among a plurality of image analysis stations to analyze the images. The images may be analyzed with the selected image analysis station. Other methods, systems, and kits are also disclosed.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Gregory E. Johnson, Edward R. Dowski, JR.
  • Publication number: 20130321603
    Abstract: A method of one aspect may include receiving an encapsulated image acquisition device having an internal memory. The internal memory may store images acquired by the encapsulated image acquisition device. The images may be transferred from the internal memory to an external memory that is external to the encapsulated image acquisition device. An image analysis station may be selected from among a plurality of image analysis stations to analyze the images. The images may be analyzed with the selected image analysis station. Other methods, systems, and kits are also disclosed.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: OMNIVISION TECHNOLOGIES, INC
    Inventors: Gregory E. Johnson, Edward R. Dowski, JR.
  • Publication number: 20130321604
    Abstract: A method of one aspect may include receiving an encapsulated image acquisition device having an internal memory. The internal memory may store images acquired by the encapsulated image acquisition device. The images may be transferred from the internal memory to an external memory that is external to the encapsulated image acquisition device. An image analysis station may be selected from among a plurality of image analysis stations to analyze the images. The images may be analyzed with the selected image analysis station. Other methods, systems, and kits are also disclosed.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: Omnivision Technologies, Inc.
    Inventors: Gregory E. Johnson, Edward R. Dowski
  • Patent number: 8599301
    Abstract: Arrayed imaging systems include an array of detectors formed with a common base and a first array of layered optical elements, each one of the layered optical elements being optically connected with a detector in the array of detectors.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: December 3, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Paulo E. X. Silveira, George C. Barnes, IV, Vladislav V. Chumachenko, Dennis W. Dobbs, Regis S. Fan, Gregory E. Johnson, Miodrag Scepanovic, Satoru Tachihara, Christopher J. Linnen, Inga Tamayo, Kenneth Kubala, Mark Meloni, Brian Schwartz, Robert Cormack, Michael Hepp
  • Patent number: 8593552
    Abstract: Systems and methods for generating images of an object having a known object velocity include imaging electromagnetic radiation from the object onto a sensor array of an imaging system, adjusting at least one of a shutter rate and a shutter direction of the imaging system in accordance with an image velocity of the image across the sensor array, and sampling output of the sensor array in accordance with the shutter rate and the shutter direction to generate the images. Systems and methods for generating images of an object moving through a scene include a first imaging system generating image data samples of the scene, a post processing system that analyzes the samples to determine when the object is present in the scene, and one or more second imaging systems triggered by the post processing system to generate one or more second image data samples of the object.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: November 26, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Kenneth S. Kubala, Hans Brandon Wach
  • Patent number: 8563913
    Abstract: In an embodiment, a low height imaging system has: one or more optical channels and a detector array, each of the optical channels (a) associated with at least one detector of the array, (b) having one or more optical components and a restrictive ray corrector, and (c) configured to direct steeper incident angle field rays onto the at least one detector.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: October 22, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Paulo E. X. Silveira, Robert H. Cormack, Kenneth Scott Kubala
  • Patent number: 8532349
    Abstract: A method of one aspect may include receiving an encapsulated image acquisition device having an internal memory. The internal memory may store images acquired by the encapsulated image acquisition device. The images may be transferred from the internal memory to an external memory that is external to the encapsulated image acquisition device. An image analysis station may be selected from among a plurality of image analysis stations to analyze the images. The images may be analyzed with the selected image analysis station. Other methods, systems, and kits are also disclosed.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: September 10, 2013
    Assignee: Omnivision Technologies, Inc.
    Inventors: Gregory E. Johnson, Edward R. Dowski, Jr.
  • Patent number: 8426789
    Abstract: In an embodiment, a method forms a lens with wavefront coding. The method includes positioning a lens in a mold; and curing material onto a surface of the lens to form an aspheric surface of the lens with wavefront coding. In another embodiment, a system for fabricating and evaluating a modified lens includes a collar for holding an initial lens, the initial lens having a front surface and a rear surface, a pin having a surface for molding a moldable material onto the front surface of the initial lens, to form the modified lens, an image forming arrangement; and a test object to be imaged by the modified lens and the image forming arrangement.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: April 23, 2013
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward R. Dowski, Jr., Paulo E. X. Silveira, Robert H. Cormack, Kenneth Scott Kubala
  • Publication number: 20120113287
    Abstract: Systems and methods include optics having one or more phase modifying elements that modify wavefront phase to introduce image attributes into an optical image. A detector converts the optical image to electronic data while maintaining the image attributes. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets, and independently processes the data sets to form processed electronic data. The processing may optionally be nonlinear. Other imaging systems and methods include optics having one or more phase modifying elements that modify wavefront phase to form an optical image. A detector generates electronic data having one or more image attributes that are dependent on characteristics of the phase modifying elements and/or the detector. A signal processor subdivides the electronic data into one or more data sets, classifies the data sets and independently processes the data sets to form processed electronic data.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 10, 2012
    Inventors: Gregory E. Johnson, Edward R. Dowski, JR., Kenneth S. Kubala, Ramkumar Narayanswamy, Hans Brandon Wach