Patents by Inventor Edward R. McCoy

Edward R. McCoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11833297
    Abstract: This disclosure describes systems and methods for providing adaptive base flow scheduling during ventilation of a patient to optimize patient-machine synchrony and accuracy of estimated exhaled as well as inhaled tidal volumes. Further, this disclosure describes systems and methods for providing adaptive inspiratory trigger threshold scheduling during the adaptive base flow scheduling. Further still, this disclosure describes systems and methods for determining an estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the estimated leak flow. Moreover, this disclosure describes systems and methods for determining a change in the estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the change in the estimated leak flow.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: December 5, 2023
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K Aviano, Edward R. McCoy
  • Patent number: 11497869
    Abstract: This disclosure describes systems and methods for providing novel adaptive base flow scheduling during ventilation of a patient to optimize the accuracy of estimated exhaled tidal volume. Further, this disclosure describes systems and methods for providing novel adaptive inspiratory trigger threshold scheduling during the novel adaptive base flow scheduling.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: November 15, 2022
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Publication number: 20200297950
    Abstract: This disclosure describes systems and methods for providing adaptive base flow scheduling during ventilation of a patient to optimize patient-machine synchrony and accuracy of estimated exhaled as well as inhaled tidal volumes. Further, this disclosure describes systems and methods for providing adaptive inspiratory trigger threshold scheduling during the adaptive base flow scheduling. Further still, this disclosure describes systems and methods for determining an estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the estimated leak flow. Moreover, this disclosure describes systems and methods for determining a change in the estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the change in the estimated leak flow.
    Type: Application
    Filed: June 2, 2020
    Publication date: September 24, 2020
    Applicant: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Patent number: 10709854
    Abstract: This disclosure describes systems and methods for providing adaptive base flow scheduling during ventilation of a patient to optimize patient-machine synchrony and accuracy of estimated exhaled as well as inhaled tidal volumes. Further, this disclosure describes systems and methods for providing adaptive inspiratory trigger threshold scheduling during the adaptive base flow scheduling. Further still, this disclosure describes systems and methods for determining an estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the estimated leak flow. Moreover, this disclosure describes systems and methods for determining a change in the estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the change in the estimated leak flow.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: July 14, 2020
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Publication number: 20200129714
    Abstract: This disclosure describes systems and methods for providing novel adaptive base flow scheduling during ventilation of a patient to optimize the accuracy of estimated exhaled tidal volume. Further, this disclosure describes systems and methods for providing novel adaptive inspiratory trigger threshold scheduling during the novel adaptive base flow scheduling.
    Type: Application
    Filed: December 24, 2019
    Publication date: April 30, 2020
    Applicant: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Patent number: 10543327
    Abstract: This disclosure describes systems and methods for providing novel adaptive base flow scheduling during ventilation of a patient to optimize the accuracy of estimated exhaled tidal volume. Further, this disclosure describes systems and methods for providing novel adaptive inspiratory trigger threshold scheduling during the novel adaptive base flow scheduling.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: January 28, 2020
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Publication number: 20170095627
    Abstract: This disclosure describes systems and methods for providing adaptive base flow scheduling during ventilation of a patient to optimize patient-machine synchrony and accuracy of estimated exhaled as well as inhaled tidal volumes. Further, this disclosure describes systems and methods for providing adaptive inspiratory trigger threshold scheduling during the adaptive base flow scheduling. Further still, this disclosure describes systems and methods for determining an estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the estimated leak flow. Moreover, this disclosure describes systems and methods for determining a change in the estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the change in the estimated leak flow.
    Type: Application
    Filed: November 22, 2016
    Publication date: April 6, 2017
    Applicant: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Patent number: 9498589
    Abstract: This disclosure describes systems and methods for providing adaptive base flow scheduling during ventilation of a patient to optimize patient-machine synchrony and accuracy of estimated exhaled as well as inhaled tidal volumes. Further, this disclosure describes systems and methods for providing adaptive inspiratory trigger threshold scheduling during the adaptive base flow scheduling. Further still, this disclosure describes systems and methods for determining an estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the estimated leak flow. Moreover, this disclosure describes systems and methods for determining a change in the estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the change in the estimated leak flow.
    Type: Grant
    Filed: December 31, 2011
    Date of Patent: November 22, 2016
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Publication number: 20160250427
    Abstract: This disclosure describes systems and methods for providing novel adaptive base flow scheduling during ventilation of a patient to optimize the accuracy of estimated exhaled tidal volume. Further, this disclosure describes systems and methods for providing novel adaptive inspiratory trigger threshold scheduling during the novel adaptive base flow scheduling.
    Type: Application
    Filed: May 12, 2016
    Publication date: September 1, 2016
    Applicant: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Patent number: 9421338
    Abstract: A ventilator including a pneumatic system for providing and receiving breathing gas, and a controller operatively coupled with the pneumatic system. The controller is operable to control circulation by the pneumatic system of breathing gas to and from a patient, and to adjust at least one of a volume and pressure of breathing gas delivered to the patient, such adjustment being based upon elastic properties of a component used to fluidly couple the pneumatic system to a patient.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 23, 2016
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Rhomere S. Jimenez, Edward R. McCoy, Jeffrey K. Aviano
  • Patent number: 9364624
    Abstract: This disclosure describes systems and methods for providing novel adaptive base flow scheduling during ventilation of a patient to optimize the accuracy of estimated exhaled tidal volume. Further, this disclosure describes systems and methods for providing novel adaptive inspiratory trigger threshold scheduling during the novel adaptive base flow scheduling.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 14, 2016
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Patent number: 9302061
    Abstract: This disclosure describes systems and methods for detecting and quantifying transmission delays associated with distributed sensing and monitoring functions within a ventilatory system. Specifically, the present methods and systems described herein define an event-based delay detection algorithm for determining transmission delays between distributed signal measurement and processing subsystems and a central platform that receives data from these subsystems. It is important to evaluate and quantify transmission delays because dyssynchrony in data communication may result in the misalignment of visualization and monitoring systems or instability in closed-loop control systems. Generally, embodiments described herein seek to quantify transmission delays by selecting a ventilator-based defining event as a temporal baseline and calculating the delay between the inception of the defining event and the receipt of data regarding the defining event from one or more distributed sensing devices.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: April 5, 2016
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Edward R. McCoy, Rhomere S. Jimenez, Gail F. Upham
  • Patent number: 8905024
    Abstract: Systems and methods are described for application of a transitory corrective modification to a hot-wire anemometer flow voltage and/or calculated flow rate to compensate for transient thermal response of the anemometer during a change in mixture of a mixed gas being measured. According to one embodiment a method of applying the transitory corrective modification is provided. An output signal of an exhalation flow sensor of a medical ventilator is received. The flow sensor includes a hot-wire anemometer. The output signal is indicative of a rate of flow of expired gas by a patient. Transient thermal response of the hot-wire anemometer is compensated for by applying a corrective modification to the output signal or a value based thereon. The corrective modification is based at least in part on a fraction of inspired oxygen (FiO2) being supplied by the medical ventilator to the patient.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 9, 2014
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Rhomere S. Jimenez, Edward R. McCoy, Jeffrey K. Aviano
  • Patent number: 8794234
    Abstract: A ventilator and method of ventilator control. The ventilator includes a pneumatic system for providing and receiving breathing gas, and a controller operatively coupled with the pneumatic system. The controller employs closed-loop control to provide positive breathing assistance to a patient. Supplemental feed-forward compensatory assistance is also provided, in addition to and independently of that commanded by the closed-loop control. The supplemental assistance may be determined, set or selected based on a ventilator parameter and/or an operator parameter, and/or as an automatic ongoing compensatory mechanism responding to varying patient respiratory demand.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: August 5, 2014
    Assignee: Covidien LP
    Inventors: Medhi M. Jafari, Jeffrey K. Aviano, Edward R. McCoy, Rhomere S. Jimenez
  • Publication number: 20130239967
    Abstract: Systems and methods are described for application of a transitory corrective modification to a hot-wire anemometer flow voltage and/or calculated flow rate to compensate for transient thermal response of the anemometer during a change in mixture of a mixed gas being measured. According to one embodiment a method of applying the transitory corrective modification is provided. An output signal of an exhalation flow sensor of a medical ventilator is received. The flow sensor includes a hot-wire anemometer. The output signal is indicative of a rate of flow of expired gas by a patient. Transient thermal response of the hot-wire anemometer is compensated for by applying a corrective modification to the output signal or a value based thereon. The corrective modification is based at least in part on a fraction of inspired oxygen (FiO2) being supplied by the medical ventilator to the patient.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 19, 2013
    Applicant: Covidien LP
    Inventors: Mehdi M. Jafari, Rhomere S. Jimenez, Edward R. McCoy, Jeffrey K. Aviano
  • Patent number: 8528554
    Abstract: This disclosure describes systems and methods for purging narrow diameter sensor tubing, occasionally referred to as “sensor lines,” in a ventilation system. The disclosure describes a novel approach in which a series of short, periodic releases of pressurized gas through the sensor tubes are used to clear any blockages due to condensation or patient secretions.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: September 10, 2013
    Assignee: Covidien LP
    Inventors: Medhi M. Jafari, Jeffrey K. Aviano, Daniel G. Grabol, Edward R. McCoy, Gail F. Upham
  • Publication number: 20130220324
    Abstract: A method for ventilating a patient with a ventilator includes receiving a target pressure input for a breathing phase, receiving at least one oscillation parameter, imposing an oscillatory waveform on the target pressure, the oscillatory waveform having characteristics defined by the at least one oscillation parameter and configured to oscillate substantially about the target pressure for at least a portion of the breathing phase, and delivering an amount of flow sufficient to achieve an oscillatory target pressure based on the imposed oscillatory waveform.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Mehdi M. Jafari, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Publication number: 20130167842
    Abstract: This disclosure describes systems and methods for providing adaptive base flow scheduling during ventilation of a patient to optimize patient-machine synchrony and accuracy of estimated exhaled as well as inhaled tidal volumes. Further, this disclosure describes systems and methods for providing adaptive inspiratory trigger threshold scheduling during the adaptive base flow scheduling. Further still, this disclosure describes systems and methods for determining an estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the estimated leak flow. Moreover, this disclosure describes systems and methods for determining a change in the estimated leak flow and adjusting the adaptive base flow scheduling and the adaptive inspiratory trigger threshold scheduling based on the change in the estimated leak flow.
    Type: Application
    Filed: December 31, 2011
    Publication date: July 4, 2013
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Publication number: 20130146055
    Abstract: This disclosure describes systems and methods for providing novel adaptive base flow scheduling during ventilation of a patient to optimize the accuracy of estimated exhaled tidal volume. Further, this disclosure describes systems and methods for providing novel adaptive inspiratory trigger threshold scheduling during the novel adaptive base flow scheduling.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: Nellcor Puritan Bennett LLC
    Inventors: Mehdi M. Jafari, Milenko Masic, Rhomere S. Jimenez, Jeffrey K. Aviano, Edward R. McCoy
  • Patent number: 8434479
    Abstract: Systems and methods are described for application of a transitory corrective modification to a hot-wire anemometer flow voltage and/or calculated flow rate to compensate for transient thermal response of the anemometer during a change in mixture of a mixed gas being measured. According to one embodiment a method of applying the transitory corrective modification is provided. An output signal of an exhalation flow sensor of a medical ventilator is received. The flow sensor includes a hot-wire anemometer. The output signal is indicative of a rate of flow of expired gas by a patient. Transient thermal response of the hot-wire anemometer is compensated for by applying a corrective modification to the output signal or a value based thereon. The corrective modification is based at least in part on a fraction of inspired oxygen (FiO2) being supplied by the medical ventilator to the patient.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: May 7, 2013
    Assignee: Covidien LP
    Inventors: Mehdi M. Jafari, Rhomere S. Jimenez, Edward R. McCoy, Jeffrey K. Aviano