Patents by Inventor Edward R. Wetherbee

Edward R. Wetherbee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948051
    Abstract: In one embodiment, a method for auditing the results of a machine learning model includes: retrieving a set of state estimates for original time series data values from a database under audit; reversing the state estimation computation for each of the state estimates to produce reconstituted time series data values for each of the state estimates; retrieving the original time series data values from the database under audit; comparing the original time series data values pairwise with the reconstituted time series data values to determine whether the original time series and reconstituted time series match; and generating a signal that the database under audit (i) has not been modified where the original time series and reconstituted time series match, and (ii) has been modified where the original time series and reconstituted time series do not match.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: April 2, 2024
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Edward R. Wetherbee, Kenneth P. Baclawski, Guang C. Wang, Kenny C. Gross, Anna Chystiakova, Dieter Gawlick, Zhen Hua Liu, Richard Paul Sonderegger
  • Patent number: 11726160
    Abstract: Systems, methods, and other embodiments associated with automated calibration in electromagnetic scanners are described. In one embodiment, a method includes: detecting one or more peak frequency bands in electromagnetic signals collected by the electromagnetic scanner at a geographic location; comparing the one or more peak frequency bands to broadcast frequencies assigned to local radio stations of the geographic location; and indicating that the electromagnetic scanner is calibrated by finding at least one match between one peak frequency band of the peak frequency bands and one of the broadcast frequencies. An electromagnetic scanner may be recalibrated based on comparing the one or more peak frequency bands to broadcast frequencies.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: August 15, 2023
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Andrew Lewis, Michael Dayringer, Guang C. Wang, Kenny C. Gross
  • Patent number: 11720823
    Abstract: Systems, methods, and other embodiments associated with autonomous cloud-node scoping for big-data machine learning use cases are described. In some example embodiments, an automated scoping tool, method, and system are presented that, for each of multiple combinations of parameter values, (i) set a combination of parameter values describing a usage scenario, (ii) execute a machine learning application according to the combination of parameter values on a target cloud environment, and (iii) measure the computational cost for the execution of the machine learning application. A recommendation regarding configuration of central processing unit(s), graphics processing unit(s), and memory for the target cloud environment to execute the machine learning application is generated based on the measured computational costs.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: August 8, 2023
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Kenny C. Gross, Guang C. Wang, Matthew T. Gerdes
  • Patent number: 11686756
    Abstract: Detecting a counterfeit status of a target device by: selecting a set of frequencies that best reflect load dynamics or other information content of a reference device while undergoing a power test sequence; obtaining target electromagnetic interference (EMI) signals emitted by the target device while undergoing the same power test sequence; creating a sequence of target kiviat plots from the amplitude of the target EMI signals at each of the set of frequencies at observations over the power test sequence to form a target kiviat tube EMI fingerprint; comparing the target kiviat tube EMI fingerprint to a reference kiviat tube EMI fingerprint for the reference device undergoing the power test sequence to determine whether the target device and the reference device are of the same type; and generating a signal to indicate a counterfeit status based at least in part on the results of the comparison.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: June 27, 2023
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Rui Zhong, Kenny C. Gross, Guang C. Wang
  • Publication number: 20220326292
    Abstract: Detecting a counterfeit status of a target device by: selecting a set of frequencies that best reflect load dynamics or other information content of a reference device while undergoing a power test sequence; obtaining target electromagnetic interference (EMI) signals emitted by the target device while undergoing the same power test sequence; creating a sequence of target kiviat plots from the amplitude of the target EMI signals at each of the set of frequencies at observations over the power test sequence to form a target kiviat tube EMI fingerprint; comparing the target kiviat tube EMI fingerprint to a reference kiviat tube EMI fingerprint for the reference device undergoing the power test sequence to determine whether the target device and the reference device are of the same type; and generating a signal to indicate a counterfeit status based at least in part on the results of the comparison.
    Type: Application
    Filed: February 16, 2022
    Publication date: October 13, 2022
    Inventors: Edward R. WETHERBEE, Rui ZHONG, Kenny C. GROSS, Guang C. WANG
  • Patent number: 11460500
    Abstract: Detecting whether a target device that includes multiple electronic components is genuine or suspected counterfeit by: performing a test sequence of energizing and de-energizing the target device and collecting electromagnetic interference (EMI) signals emitted by the target device; generating a target EMI fingerprint from the EMI signals collected; retrieving a plurality of reference EMI fingerprints from a database library, each of which corresponds to a different configuration of electronic components of a genuine device of the same make and model as the target device; iteratively comparing the target EMI fingerprint to the retrieved reference EMI fingerprints and generating a similarity metric between each compared set; and indicating that the target device (i) is genuine where the similarity metric for any individual reference EMI fingerprint satisfies a threshold test, and is a suspect counterfeit device where no similarity metric for any individual reference EMI fingerprint satisfies the test.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: October 4, 2022
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Guang C. Wang, Kenny C. Gross, Michael Dayringer, Andrew Lewis, Matthew T. Gerdes
  • Publication number: 20220284351
    Abstract: Systems, methods, and other embodiments associated with autonomous cloud-node scoping for big-data machine learning use cases are described. In some example embodiments, an automated scoping tool, method, and system are presented that, for each of multiple combinations of parameter values, (i) set a combination of parameter values describing a usage scenario, (ii) execute a machine learning application according to the combination of parameter values on a target cloud environment, and (iii) measure the computational cost for the execution of the machine learning application. A recommendation regarding configuration of central processing unit(s), graphics processing unit(s), and memory for the target cloud environment to execute the machine learning application is generated based on the measured computational costs.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Inventors: Edward R. WETHERBEE, Kenny C. GROSS, Guang C. WANG, Matthew T. GERDES
  • Publication number: 20220270189
    Abstract: Systems and methods are described that estimates a remaining useful life (RUL) of an electronic device. Time-series signals gathered from sensors in the electronic device are received. Statistical changes are detected in the set of time-series signals that are deemed as anomalous signal patterns. Anomaly alarms are generated, wherein an anomaly alarm is generated for each of the anomalous signal patterns. An irrelevance filter is applied to the set of anomaly alarms to produce filtered anomaly alarms, wherein the irrelevance filter removes anomaly alarms associated with anomalous signal patterns that are not correlated with previous failures of similar electronic devices. A logistic-regression model is used to compute an RUL-based risk index for the electronic device based on the filtered anomaly alarms. When the risk index exceeds a risk-index threshold, a notification is generated indicating that the electronic device has a limited remaining useful life.
    Type: Application
    Filed: May 11, 2022
    Publication date: August 25, 2022
    Inventors: Edward R. WETHERBEE, Kenny C. GROSS
  • Publication number: 20220196776
    Abstract: Systems, methods, and other embodiments associated with automated calibration in electromagnetic scanners are described. In one embodiment, a method includes: detecting one or more peak frequency bands in electromagnetic signals collected by the electromagnetic scanner at a geographic location; comparing the one or more peak frequency bands to broadcast frequencies assigned to local radio stations of the geographic location; and indicating that the electromagnetic scanner is calibrated by finding at least one match between one peak frequency band of the peak frequency bands and one of the broadcast frequencies. An electromagnetic scanner may be recalibrated based on comparing the one or more peak frequency bands to broadcast frequencies.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Inventors: Edward R. WETHERBEE, Andrew LEWIS, Michael DAYRINGER, Guang C. WANG, Kenny C. GROSS
  • Patent number: 11367018
    Abstract: Systems, methods, and other embodiments associated with autonomous cloud-node scoping for big-data machine learning use cases are described. In some example embodiments, an automated scoping tool, method, and system are presented that, for each of multiple combinations of parameter values, (i) set a combination of parameter values describing a usage scenario, (ii) execute a machine learning application according to the combination of parameter values on a target cloud environment, and (iii) measure the computational cost for the execution of the machine learning application. A recommendation regarding configuration of central processing unit(s), graphics processing unit(s), and memory for the target cloud environment to execute the machine learning application is generated based on the measured computational costs.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: June 21, 2022
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Kenny C. Gross, Guang C. Wang, Matthew T. Gerdes
  • Patent number: 11341588
    Abstract: During operation, the system receives time-series signals gathered from sensors in a utility system asset. Next, the system uses an inferential model to generate estimated values for the time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the time-series signals to produce residuals. The system then performs a sequential probability ratio test (SPRT) on the residuals to produce SPRT alarms. Next, the system applies an irrelevance filter to the SPRT alarms to produce filtered SPRT alarms, wherein the irrelevance filter removes SPRT alarms for signals that are uncorrelated with previous failures of similar utility system assets. The system then uses a logistic-regression model to compute an RUL-based risk index for the utility system asset based on the filtered SPRT alarms. When the risk index exceeds a threshold, the system generates a notification indicating that the utility system asset needs to be replaced.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: May 24, 2022
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Kenny C. Gross
  • Patent number: 11275144
    Abstract: Systems, methods, and other embodiments associated with automated calibration of electromagnetic interference (EMI) fingerprint scanning instrumentation based on radio frequencies are described. In one embodiment, a method for detecting a calibration state of an EMI fingerprint scanning device includes: collecting electromagnetic signals with the EMI fingerprint scanning device for a test period of time at a geographic location; identifying one or more peak frequency bands in the collected electromagnetic signals; comparing the one or more peak frequency bands to assigned radio station frequencies at the geographic location to determine if a match is found; and generating a calibration state signal based at least in part on the comparing to indicate whether the EMI fingerprint scanning device is calibrated or not calibrated.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: March 15, 2022
    Assignee: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Andrew Lewis, Michael Dayringer, Guang C. Wang, Kenny C. Gross
  • Patent number: 11255894
    Abstract: Detecting a counterfeit status of a target utility device by: selecting a set of frequencies that best reflect load dynamics or other information content of a reference utility device while undergoing a power test sequence; obtaining target electromagnetic interference (EMI) signals emitted by the target utility device while undergoing the same power test sequence; creating a sequence of target kiviat plots from the amplitude of the target EMI signals at each of the set of frequencies at observations over the power test sequence to form a target kiviat tube EMI fingerprint; comparing the target kiviat tube EMI fingerprint to a reference kiviat tube EMI fingerprint for the reference utility device undergoing the power test sequence to determine whether the target utility device and the reference utility device are of the same type; and generating a signal to indicate a counterfeit status based at least in part on the results of the comparison.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: February 22, 2022
    Assignee: ORACLE INTERNATIONAL CORPORATION
    Inventors: Edward R. Wetherbee, Rui Zhong, Kenny C. Gross, Guang C. Wang
  • Publication number: 20210295210
    Abstract: In one embodiment, a method for auditing the results of a machine learning model includes: retrieving a set of state estimates for original time series data values from a database under audit; reversing the state estimation computation for each of the state estimates to produce reconstituted time series data values for each of the state estimates; retrieving the original time series data values from the database under audit; comparing the original time series data values pairwise with the reconstituted time series data values to determine whether the original time series and reconstituted time series match; and generating a signal that the database under audit (i) has not been modified where the original time series and reconstituted time series match, and (ii) has been modified where the original time series and reconstituted time series do not match.
    Type: Application
    Filed: March 23, 2020
    Publication date: September 23, 2021
    Inventors: Edward R. WETHERBEE, Kenneth P. BACLAWSKI, Guang C. WANG, Kenny C. GROSS, Anna CHYSTIAKOVA, Dieter GAWLICK, Zhen Hua LIU, Richard Paul SONDEREGGER
  • Publication number: 20210293916
    Abstract: Systems, methods, and other embodiments associated with automated calibration of electromagnetic interference (EMI) fingerprint scanning instrumentation for utility power system counterfeit detection are described. In one embodiment, a method for detecting a calibration state of an EMI fingerprint scanning device includes: collecting electromagnetic signals with the EMI fingerprint scanning device for a test period of time at a geographic location; identifying one or more peak frequency bands in the collected electromagnetic signals; comparing the one or more peak frequency bands to assigned radio station frequencies at the geographic location to determine if a match is found; and generating a calibration state signal based at least in part on the comparing to indicate whether the EMI fingerprint scanning device is calibrated or not calibrated.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Inventors: Edward R. WETHERBEE, Andrew LEWIS, Michael DAYRINGER, Guang C. WANG, Kenny C. GROSS
  • Publication number: 20210270884
    Abstract: Detecting a counterfeit status of a target utility device by: selecting a set of frequencies that best reflect load dynamics or other information content of a reference utility device while undergoing a power test sequence; obtaining target electromagnetic interference (EMI) signals emitted by the target utility device while undergoing the same power test sequence; creating a sequence of target kiviat plots from the amplitude of the target EMI signals at each of the set of frequencies at observations over the power test sequence to form a target kiviat tube EMI fingerprint; comparing the target kiviat tube EMI fingerprint to a reference kiviat tube EMI fingerprint for the reference utility device undergoing the power test sequence to determine whether the target utility device and the reference utility device are of the same type; and generating a signal to indicate a counterfeit status based at least in part on the results of the comparison.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 2, 2021
    Inventors: Edward R. WETHERBEE, Rui ZHONG, Kenny C. GROSS, Guang C. WANG
  • Patent number: 11099219
    Abstract: During a surveillance mode, the system receives present time-series signals gathered from sensors in the power transformer. Next, the system uses an inferential model to generate estimated values for the present time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the present time-series signals to produce residuals. The system then performs a sequential probability ratio test on the residuals to produce alarms having associated tripping frequencies (TFs). Next, the system uses a logistic-regression model to compute a risk index for the power transformer based on the TFs. If the risk index exceeds a threshold, the system generates a notification that the power transformer needs to be replaced. The system also periodically updates the logistic-regression model based on the results of periodic dissolved gas analyses for the transformer to more accurately compute the index for the power transformer.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 24, 2021
    Assignee: Oracle International Corporation
    Inventors: Kenny C. Gross, Edward R. Wetherbee
  • Publication number: 20210247442
    Abstract: Detecting whether a target utility device that includes multiple electronic components is genuine or suspected counterfeit by: performing a test sequence of energizing and de-energizing the target device and collecting electromagnetic interference (EMI) signals emitted by the target device; generating a target EMI fingerprint from the EMI signals collected; retrieving a plurality of reference EMI fingerprints from a database library, each of which corresponds to a different configuration of electronic components of a genuine device of the same make and model as the target device; iteratively comparing the target EMI fingerprint to the retrieved reference EMI fingerprints and generating a similarity metric between each compared set; and indicating that the target device (i) is genuine where the similarity metric for any individual reference EMI fingerprint satisfies a threshold test, and is a suspect counterfeit device where no similarity metric for any individual reference EMI fingerprint satisfies the test.
    Type: Application
    Filed: February 7, 2020
    Publication date: August 12, 2021
    Inventors: Edward R. WETHERBEE, Guang C. WANG, Kenny C. GROSS, Michael DAYRINGER, Andrew LEWIS, Matthew T. GERDES
  • Publication number: 20210174248
    Abstract: Systems, methods, and other embodiments associated with autonomous cloud-node scoping for big-data machine learning use cases are described. In some example embodiments, an automated scoping tool, method, and system are presented that, for each of multiple combinations of parameter values, (i) set a combination of parameter values describing a usage scenario, (ii) execute a machine learning application according to the combination of parameter values on a target cloud environment, and (iii) measure the computational cost for the execution of the machine learning application. A recommendation regarding configuration of central processing unit(s), graphics processing unit(s), and memory for the target cloud environment to execute the machine learning application is generated based on the measured computational costs.
    Type: Application
    Filed: January 2, 2020
    Publication date: June 10, 2021
    Inventors: Edward R. WETHERBEE, Kenny C. GROSS, Guang C. WANG, Matthew T. GERDES
  • Publication number: 20210065316
    Abstract: During operation, the system receives time-series signals gathered from sensors in a utility system asset. Next, the system uses an inferential model to generate estimated values for the time-series signals, and performs a pairwise differencing operation between actual values and the estimated values for the time-series signals to produce residuals. The system then performs a sequential probability ratio test (SPRT) on the residuals to produce SPRT alarms. Next, the system applies an irrelevance filter to the SPRT alarms to produce filtered SPRT alarms, wherein the irrelevance filter removes SPRT alarms for signals that are uncorrelated with previous failures of similar utility system assets. The system then uses a logistic-regression model to compute an RUL-based risk index for the utility system asset based on the filtered SPRT alarms. When the risk index exceeds a threshold, the system generates a notification indicating that the utility system asset needs to be replaced.
    Type: Application
    Filed: September 4, 2019
    Publication date: March 4, 2021
    Applicant: Oracle International Corporation
    Inventors: Edward R. Wetherbee, Kenny C. Gross