Patents by Inventor Edward Raymond Dowski

Edward Raymond Dowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8111937
    Abstract: An image processing method includes wavefront coding a wavefront that forms an optical image, converting the optical image to a data stream and processing the data stream with a color-specific filter kernel to reverse effects of wavefront coding and generate a final image. Another image processing method includes wavefront coding a wavefront that forms an optical image, converting the optical image to a data stream and colorspace converting the data stream. The method separates spatial information and color information of the colorspace converted data stream into one or more separate channels and deblurs one or both of the spatial information and the color information. The method recombines the channels to recombine deblurred spatial information with deblurred color information, and colorspace converts the recombined deblurred spatial and color information to generate an output image.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 7, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward Raymond Dowski, Jr., Gregory Edward Johnson, Ashley K. Macon, Hans B. Wach
  • Patent number: 8107705
    Abstract: A biometric optical recognition system includes optics, including a wavefront coding mask, for imaging a wavefront of object to be recognized to an intermediate image, and a detector for detecting the intermediate image. A modulation transfer function detected by the detector contains no zeros such that subsequent task based image processing recognizes the object. A biometric recognition system includes optics for imaging a wavefront of an object to be recognized to a first intermediate image, and a detector for detecting the first intermediate image. The optics include a phase changing element configured for modifying the wavefront such that a modulation transfer function characterizing detection of the first intermediate image contains no zeros such that subsequent task based image processing recognizes the object.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: January 31, 2012
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward Raymond Dowski, Jr., Kenneth Scott Kubala, Alan Eugene Baron
  • Patent number: 8004762
    Abstract: Systems and methods for generating an optical image include forming an optical image with at least one optical element of an optical imager while modifying wavefront phase. Modifying the phase does not reduce an optical bandpass limited by an aperture of the optical imager. The systems and methods also include detecting the optical image over a range of spatial frequencies such that there are no zeros in an optical transfer function of the optical imager over detected spatial frequencies within the optical bandpass and over an extended depth of focus that is larger than a depth of focus occurring without modifying wavefront phase.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: August 23, 2011
    Assignee: The Regents Of The University Of Colorado, a body corporate
    Inventors: Wade Thomas Cathey, Jr., Edward Raymond Dowski, Jr.
  • Patent number: 7995853
    Abstract: An image processing system includes a wavefront coding element that codes a wavefront forming an optical image, a detector for converting the optical image to a data stream and an image processor for processing the data stream with a reduced set filter kernel to reverse effects of wavefront coding and generate a final image. The reduced set filter kernel may include a reduced set distributive filter kernel. An image processing method includes wavefront coding a wavefront that forms an optical image, converting the optical image to a data stream, and processing the data stream with a reduced set filter kernel to reverse effects of wavefront coding and generate a final image. The processing consists of processing the image, for each pixel, with filter tap logic consisting of a shifter.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 9, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward Raymond Dowski, Jr., Gregory Edward Johnson, Ashley K. Macon, Hans B. Wach
  • Publication number: 20110142310
    Abstract: A biometric optical recognition system includes optics, including a wavefront coding mask, for imaging a wavefront of object to be recognized to an intermediate image, and a detector for detecting the intermediate image. A modulation transfer function detected by the detector contains no zeros such that subsequent task based image processing recognizes the object. A biometric recognition system includes optics for imaging a wavefront of an object to be recognized to a first intermediate image, and a detector for detecting the first intermediate image. The optics include a phase changing element configured for modifying the wavefront such that a modulation transfer function characterizing detection of the first intermediate image contains no zeros such that subsequent task based image processing recognizes the object.
    Type: Application
    Filed: January 20, 2011
    Publication date: June 16, 2011
    Inventors: Edward Raymond Dowski, JR., Kenneth Scott Kubala, Alan Eugene Baron
  • Patent number: 7889903
    Abstract: A biometric optical recognition system includes optics, including a wavefront coding mask, for imaging a wavefront of object to be recognized to an intermediate image, and a detector for detecting the intermediate image. A modulation transfer function detected by the detector contains no zeros such that subsequent task based image processing recognizes the object. A biometric recognition system includes optics for imaging a wavefront of an object to be recognized to a first intermediate image, and a detector for detecting the first intermediate image. The optics include a phase changing element configured for modifying the wavefront such that a modulation transfer function characterizing detection of the first intermediate image contains no zeros such that subsequent task based image processing recognizes the object.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 15, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward Raymond Dowski, Jr., Kenneth Scott Kubala, Alan Eugene Baron
  • Patent number: 7876417
    Abstract: An optical lithography system that has extended depth of focus exposes a photoresist coating on a wafer, and includes an illumination sub-system, a reticle, and an imaging lens that has a pupil plane function to form an aerial image of the reticle proximate to the photoresist. The pupil plane function provides the extended depth of focus such that the system may be manufactured or used with relaxed tolerance, reduced cost and/or increased throughput. The system may be used to form precise vias within integrated circuits even in the presence of misfocus or misalignment.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: January 25, 2011
    Assignee: OmniVision Technologies, Inc.
    Inventors: Edward Raymond Dowski, Jr., Gregory E. Johnson, Kenneth S. Kubala, Wade Thomas Cathey, Jr.
  • Publication number: 20100259738
    Abstract: An optical lithography system that has extended depth of focus exposes a photoresist coating on a wafer, and includes an illumination sub-system, a reticle, and an imaging lens that has a pupil plane function to form an aerial image of the reticle proximate to the photoresist. The pupil plane function provides the extended depth of focus such that the system may be manufactured or used with relaxed tolerance, reduced cost and/or increased throughput. The system may be used to form precise vias within integrated circuits even in the presence of misfocus or misalignment.
    Type: Application
    Filed: July 21, 2006
    Publication date: October 14, 2010
    Inventors: Edward Raymond Dowski, JR., Gregory E. Johnson, Kenneth S. Kubala, Wade Thomas Cathey, JR.
  • Patent number: 7732750
    Abstract: An interference contrast imaging system images phase objects. The system includes an illumination source, illumination optics, polarizing optics for splitting the illumination into orthogonal polarizations and for recombining the polarizations, objective optics that form an image at a detector, a wavefront coding element and a post processor for processing the image by removing a phase shift imparted by the wavefront coding element. The wavefront coding element has an aperture, is between the phase object and the detector, and provides an altered optical transfer function of the imaging system by imparting the phase shift to the illumination transmitted through the wavefront coding element. The altered optical transfer function is insensitive to an object distance between the phase object and the objective optics over a greater range of object distances than would be provided by an optical transfer function of a corresponding interference contrast imaging system without the wavefront coding element.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 8, 2010
    Assignee: The Regents of the University of Colorado
    Inventors: Edward Raymond Dowski, Jr., Carol Jean Cogswell
  • Patent number: 7710658
    Abstract: Zoom lens systems and methods for imaging incoming rays over a range of ray angles are disclosed. The incoming rays are characterized by at least phase. The zoom lens system includes an optical axis and is characterized by a plurality of modulation transfer functions (MTFs) corresponding at least to the range of ray angles. The zoom lens system includes an optical group disposed along the optical axis, including at least one variable optical element that has a variable focal length selectable between at least two distinct focal length values. The optical group also includes a wavefront coding element. The wavefront coding element alters at least the phase of the incoming rays, such that the plurality of MTFs corresponding to the range of ray angles, for each one of the two distinct focal length values, are less sensitive to misfocus-like aberrations than a corresponding system without the wavefront coding element.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 4, 2010
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: Edward Raymond Dowski, Jr., Satoru Tachihara, Robert H. Cormack
  • Patent number: 7679830
    Abstract: An optical imaging system includes optics for imaging a wavefront of electromagnetic radiation to form an image at a detector. The system also includes a plurality of optical phase filters. Each of the phase filters alters phase of the wavefront. The phase filters cooperate to make the system less sensitive to misfocus, as compared to the optical imaging system without the phase filters. Another optical imaging system includes a detector and optics having two or more optical elements for imaging a wavefront onto the detector. The optical elements include aspherical surfaces that cooperate to alter phase of the wavefront such that the optics are less sensitive to defocus as compared to the optics without the aspherical surfaces. The system also includes a post processor for reversing phase alteration induced by the aspherical surfaces to produce an in-focus electronic image.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: March 16, 2010
    Assignee: The Regents of the University of Colorado
    Inventor: Edward Raymond Dowski, Jr.
  • Patent number: 7554731
    Abstract: An infrared imaging system for imaging infrared radiation from an object onto a detector includes optics configured for producing, with the infrared radiation, transverse ray intercept curves that are substantially straight, sloped lines. A wavefront coding element is configured such that a modulation transfer function of the optics and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by thermal variation within the imaging system, as compared to a modulation transfer function of the optics alone, without the wavefront coding element. A post processor is configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the optics and the wavefront coding element.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: June 30, 2009
    Assignee: OmniVision CDM Optics, Inc.
    Inventor: Edward Raymond Dowski, Jr.
  • Patent number: 7554732
    Abstract: A singlet imaging system for imaging an object onto a detector includes a lens configured for producing transverse ray intercept curves which are substantially straight, sloped lines. A wavefront coding element is formed on a surface of the lens and configured such that a modulation transfer function of the lens and wavefront coding element, combined, exhibits reduced variation, over a range of spatial frequencies and caused, at least in part, by aberrations of the lens, as compared to a modulation transfer function of the lens alone, without the wavefront coding element. A post processor is configured for generating an improved modulation transfer function, over the range of spatial frequencies, as compared to the modulation transfer function of the lens and the wavefront coding element.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: June 30, 2009
    Assignee: OmniVision CDM Optics, Inc.
    Inventor: Edward Raymond Dowski, Jr.
  • Publication number: 20090109535
    Abstract: A system for forming an image includes a lens and a phase mask. The image is characterized by an optical transfer function that has no zeros within detected spatial frequencies of a detector that detects the optical image over a larger depth of focus than without the phase mask. The phase mask does not reduce an optical bandpass limited by an aperture of the lens or of the phase mask. A method for generating an optical image includes forming the image with at least one element of an imaging system while modifying wavefront phase without reducing an optical bandpass limited by an aperture of the imaging system. The method also includes detecting the optical image without introducing zeros in an optical transfer function of the imaging system, over detected spatial frequencies within the optical bandpass over an extended depth of focus.
    Type: Application
    Filed: October 13, 2008
    Publication date: April 30, 2009
    Inventors: Wade Thomas Cathey, JR., Edward Raymond Dowski, JR.
  • Publication number: 20090067680
    Abstract: A biometric optical recognition system includes optics, including a wavefront coding mask, for imaging a wavefront of object to be recognized to an intermediate image, and a detector for detecting the intermediate image. A modulation transfer function detected by the detector contains no zeros such that subsequent task based image processing recognizes the object. A biometric recognition system includes optics for imaging a wavefront of an object to be recognized to a first intermediate image, and a detector for detecting the first intermediate image. The optics include a phase changing element configured for modifying the wavefront such that a modulation transfer function characterizing detection of the first intermediate image contains no zeros such that subsequent task based image processing recognizes the object.
    Type: Application
    Filed: November 7, 2008
    Publication date: March 12, 2009
    Inventors: Edward Raymond Dowski, JR., Kenneth Scott Kubala, Alan Eugene Baron
  • Patent number: 7453653
    Abstract: Low height imaging systems may include one or more optical channels and a detector array. Each of the optical channels may be associated with one or more detectors of the array, have one or more optical components and a restrictive ray corrector, and be configured to direct steeper incident angle field rays onto the detectors. Alternatively, each of the optical channels may be associated with at least one detector, and have an aspheric GRIN lens. Another low height imaging system has an array of detectors and a GRIN lens having a surface with wavefront coding and configured to direct steeper incident angle field rays onto more than one of the detectors. One method forms a lens with wavefront coding. The method includes positioning a lens in a mold; and curing material onto a surface of the lens to form an aspheric surface of the lens with wavefront coding.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 18, 2008
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: Edward Raymond Dowski, Jr., Kenneth Scott Kubala, Robert H. Cormack, Paulo E. X. Silveira
  • Patent number: 7450745
    Abstract: An imaging system for reducing aberrations from an intervening medium, and an associated method of use are provided. The system may be an optical or task-based optical imaging system including optics, such as a phase mask, for imaging a wavefront of the system to an intermediate image and modifying phase of the wavefront such that an optical transfer function of the system is substantially invariant to focus-related aberrations from the medium. A detector detects the intermediate image, which is further processed by a decoder, removing phase effects from the optics and forming a final image substantially clear of the aberrations. Other systems may employ an encoder that codes wavefronts of acoustical waves propagating through a medium to make the wavefronts substantially invariant to acoustical aberrations from the medium. Imaging and decoding of the wavefronts reverse effects of the wavefront coding and produce sounds substantially free of the aberrations.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: November 11, 2008
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: Edward Raymond Dowski, Jr., Kenneth Scott Kubala, Alan Eugene Baron
  • Patent number: 7436595
    Abstract: A system for increasing the depth of field and decreasing the wavelength sensitivity and the effects of misfocus-producing aberrations of the lens of an incoherent optical system incorporates a special purpose optical mask into the incoherent system. The optical mask has been designed to cause the optical transfer function to remain essentially constant within some range from the in-focus position. Signal processing of the resulting intermediate image undoes the optical transfer modifying effects of the mask, resulting in an in-focus image over an increased depth of field. Generally the mask is placed at a principal plane or the image of a principal plane of the optical system. Preferably, the mask modifies only phase and not amplitude of light. The mask may be used to increase the useful range of passive ranging systems.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: October 14, 2008
    Assignee: The Regents of the University of Colorado
    Inventors: Wade Thomas Cathey, Jr., Edward Raymond Dowski, Jr.
  • Publication number: 20080131023
    Abstract: An image processing method includes wavefront coding a wavefront that forms an optical image, converting the optical image to a data stream and processing the data stream with a color-specific filter kernel to reverse effects of wavefront coding and generate a final image. Another image processing method includes wavefront coding a wavefront that forms an optical image, converting the optical image to a data stream and colorspace converting the data stream. The method separates spatial information and color information of the colorspace converted data stream into one or more separate channels and deblurs one or both of the spatial information and the color information. The method recombines the channels to recombine deblurred spatial information with deblurred color information, and colorspace converts the recombined deblurred spatial and color information to generate an output image.
    Type: Application
    Filed: October 30, 2007
    Publication date: June 5, 2008
    Inventors: Edward Raymond Dowski, Gregory Edward Johnson, Ashley K. Macon, Hans B. Wach
  • Patent number: 7379613
    Abstract: An image processing method includes the steps of wavefront coding a wavefront that forms an optical image, converting the optical image to a data stream, and processing the data stream with a filter kernel to reverse effects of wavefront coding and generate a final image. By example, the filter set kernel may be a reduced filter set kernel, or a color-specific kernel. Methods and systems are also disclosed for processing color images, such as by separating color and spatial information into separate channels. Methods and systems herein are for example useful in forming electronic devices with reduced opto-mechanical, opto-electronic and processing complexity or cost.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: May 27, 2008
    Assignee: OmniVision CDM Optics, Inc.
    Inventors: Edward Raymond Dowski, Jr., Gregory Edward Johnson, Ashley K. Macon, Hans B. Wach