Patents by Inventor Edward S. Ellis

Edward S. Ellis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6007787
    Abstract: A reaction vessel for processing liquid petroleum or chemical streams wherein the stream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one interaction zone. The reaction vessel contains vapor, and optionally liquid, passageways to bypass one or more packed beds, preferably catalyst beds. This permits more stable and efficient vessel operation.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: December 28, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Ramesh Gupta, David C. Dankworth, Dennis D. Fleming, Edward S. Ellis, James J. Schorfheide
  • Patent number: 5985131
    Abstract: A process for upgrading a liquid petroleum or chemical stream wherein said stream flows countercurrent to the flow of a treat gas, such as a hydrogen-containing gas, in at least one reaction zone. The reaction vessel used in the practice of the present invention contains vapor and optionally liquid passageway means to bypass one or more catalyst beds. This permits more stable and efficient reaction vessel operation.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: November 16, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, David C. Dankworth, Dennis D. Fleming, Edward S. Ellis, James J. Schorfheide
  • Patent number: 5968346
    Abstract: A hydroprocessing process includes two hydroprocessing reaction stages, both of which produce a liquid and a vapor effluent, and a liquid-vapor contacting stage. The first stage vapor effluent contains impurities, such as heteroatom compounds, which are removed from the vapor by contact with processed liquid effluent derived from one or both reaction stages and, optionally, also liquid recovered from processed vapor. The first and contact stage liquid effluents are passed into the second stage to finish the hydoprocessing. The contact and second stage vapor effluents are cooled to recover additional hydroprocessed product liquid.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: October 19, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Henry Jung, Ramesh Gupta, Edward S. Ellis, William E. Lewis
  • Patent number: 5942197
    Abstract: A reactor is provided for reacting a liquid with a treat gas in the presence of a catalyst, the reactor comprising a continuous wall enclosing a first reaction zone, wherein the first reaction zone includes a catalyst for causing a desired reaction between the liquid and the treat gas; a liquid inlet above the first reaction zone for allowing a portion of the liquid to enter the reactor; a gas inlet below the first reaction zone for allowing a portion of the treat gas to enter the reactor; a liquid outlet below the first reaction zone for allowing a reacted portion of the liquid to exit the reactor; a gas outlet above the first reaction zone for allowing a portion of the treat gas to exit the reactor; and a gas bypass device in the first reaction zone for allowing a portion of the treat gas to bypass a portion of the first reaction zone, the gas bypass device including a gas bypass regulating device for regulating the amount of treat gas which bypasses the first reaction zone.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: August 24, 1999
    Assignee: Exxon Research and Engineering Co
    Inventors: Ramesh Gupta, Jeffrey W. Frederick, Edward S. Ellis, David C. Dankworth, Dimitrios M. Tsangaris
  • Patent number: 5939031
    Abstract: A reactor is provided for reacting a liquid with a treat gas in the presence of a catalyst, the reactor comprising a continuous wall enclosing a first reaction zone, wherein the first reaction zone includes a catalyst for causing a desired reaction between the liquid and the treat gas; a liquid inlet above the first reaction zone for allowing an unreacted portion of the liquid to enter the reactor; a gas inlet below the first reaction zone for allowing an unreacted portion of the treat gas to enter the reactor; a liquid outlet below the first reaction zone for allowing a reacted portion of the liquid to exit the reactor; a gas outlet above the first reaction zone for allowing a reacted portion of the treat gas to exit the reactor; and a liquid bypass device in the first reaction zone for allowing a portion of the liquid to bypass a portion of the first reaction zone, the liquid bypass device including a liquid bypass regulating device for regulating the amount of liquid which bypasses the first reaction zone.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: August 17, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Edward S. Ellis, Jeffrey W. Frederick, Ramesh Gupta, David C. Dankworth, Dimitrios M. Tsangaris
  • Patent number: 5935420
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh, and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: William C. Baird, Jr., Gary B. McVicker, James J. Schorfheide, Darryl P. Klein, Sylvain Hantzer, Michel Daage, Michele S. Touvelle, Edward S. Ellis, David E.W. Vaughan, Jingguang G. Chen
  • Patent number: 5928498
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds and the ring opening of ring compounds present in petroleum and petrochemical streams. The process is conducted in the presence of hydrogen, one or more noble metal catalysts, and a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 27, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gary B. McVicker, James J. Schorfheide, William C. Baird, Jr., Michele S. Touvelle, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E. W. Vaughan, Jingguang G. Chen, Sylvain S. Hantzer
  • Patent number: 5925239
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 20, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Darryl P. Klein, Michele S. Touvelle, Edward S. Ellis, Carl W. Hudson, Sylvain Hantzer, Jingguang G. Chen, David E. W. Vaughan, Michel Daage, James J. Schorfheide, William C. Baird, Jr., Gary B. McVicker
  • Patent number: 5871635
    Abstract: Hydrocarbonaceous feedstocks admixed with a flow-through catalyst and hydrogen are hydroprocessed in a hydroprocessing reactor containing a captive hydroprocessing catalyst. The flow-through catalyst is continually withdrawn with the hydroprocessed feed from the hydroprocessing reactor. The flow-through catalyst may be an FCC, hydrocracking, isomerization or ring-opening catalyst. In a preferred embodiment, the captive hydroprocessing catalyst contains Co, Ni and/or Mo on an alumina base and the flow-through catalyst is an FCC zeolitic catalyst which is withdrawn with the hydroprocessed feed from the hydroprocessing reactor and then sent to an FCC unit.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: February 16, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, Edward S. Ellis, William Ernest Lewis
  • Patent number: 5770044
    Abstract: Disclosed is a catalytic cracking process which includes more than one catalytic cracking reaction step. The process integrates a hydroprocessing step between the catalytic cracking reaction steps in order to maximize olefins production, distillate quality and octane level of the overall cracked product. Preferably, the hydroprocessing step is included between the reaction stages, and a portion of the hydroprocessed products, i.e., a naphtha and mid distillate fraction, is combined with cracked product for further separation and hydroprocessing. It is also preferred that the first catalytic cracking reaction step be a short contact time reaction step.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: June 23, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward S. Ellis, Ramesh Gupta, Martin G. Bienstock
  • Patent number: 5770043
    Abstract: Disclosed is a catalytic cracking process which includes more than one catalytic cracking reaction step. The process integrates a hydroprocessing process step between the catalytic cracking reaction steps in order to maximize olefins production, mid-distillate quality and naphtha octane level in the cracked products. Preferably, a first cracked hydrocarbon product is obtained from a first cracking stage and separated into a mid-distillate and gas oil containing fraction having an initial boiling point of at least 300.degree. F., the distillate and gas oil containing fraction is hydroprocessed, and a naphtha fraction and a gas oil containing bottoms fraction of the hydroprocessed material are cracked in a second cracking stage.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: June 23, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward S. Ellis, Ramesh Gupta, Martin G. Bienstock
  • Patent number: 5763731
    Abstract: Naphthenic rings in naphthenic ring-containing compounds in a feedstream are selectively opened wherein at least about 50 wt. % of the ring compounds in the feedstream are characterized as containing at least one C.sub.6 ring having at least one substituent containing 3 or more carbon atoms. The naphthenic rings are opened without significant dealkylation of any pendant substituents on the ring. The feedstream, containing such compounds, is contacted with a supported catalyst containing a metal selected from Ir, Ru, or a mixture thereof, which catalyst when reacted with a feed comprised of 20 wt. % n-butylcyclohexane in heptane diluent will result in: a) at least a 10% yield of C.sub.10 paraffin yield/%C.sub.10 ring disappearance.
    Type: Grant
    Filed: April 12, 1996
    Date of Patent: June 9, 1998
    Assignee: Exxon Research and Engineering Company
    Inventors: Gary B. McVicker, Michele S. Touvelle, Carl W. Hudson, David E. W. Vaughan, Michel Daage, Sylvain Hantzer, Darryl P. Klein, Edward S. Ellis, Bruce R. Cook, Owen C. Feeley, Joseph E. Baumgartner
  • Patent number: 5670116
    Abstract: Petroleum reactors are provided which are comprised of one or more serially disposed reaction zones, each zone containing a suitable catalyst, wherein each reaction zone is followed by a non-reaction zone. One or more of said reaction zones contains a vapor by-pass means such that the vapor from one or more upstream non-reaction zones by-passes one or more downstream reaction zones and is introduced into a downstream non-reaction zone.
    Type: Grant
    Filed: December 5, 1995
    Date of Patent: September 23, 1997
    Assignee: Exxon Research & Engineering Company
    Inventors: Ramesh Gupta, Edward S. Ellis
  • Patent number: 5582711
    Abstract: Disclosed is a catalytic cracking process which includes more than one catalytic cracking reaction step. The process integrates a hydroprocessing step between the catalytic cracking reaction steps in order to maximize olefins production, distillate quality and octane level of the overall cracked product. Preferably, the hydroprocessing step is included between the reaction stages, and a portion of the hydroprocessed products, i.e., a naphtha and mid distillate fraction, is combined with cracked product for further separation and hydroprocessing. It is also preferred that the first catalytic cracking reaction step be a short contact time reaction step.
    Type: Grant
    Filed: August 17, 1994
    Date of Patent: December 10, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Edward S. Ellis, Ramesh Gupta, Martin G. Bienstock