Patents by Inventor Edward Skypala
Edward Skypala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7832643Abstract: A hand-supportable planar laser illumination and imaging (PLIIM) based code symbol reader includes: a hand-supportable housing having light transmission aperture; a linear image formation and detection module having a linear image detection array; and a planar laser illumination beam (PLIB) producing device having at least one visible laser diode (VLD) for producing a planar light illumination beam (PLIB). The code symbol reader further includes image grabber for grabbing digital linear images formed and detected by the image formation and detection module, an image data buffer for buffering the digital linear images grabbed by the image grabber and constructing a two-dimensional image from a series of buffered linear digital images, and an image processing computer for processing the buffered two-dimensional digital image so as to read code symbols graphically represented in the two-dimensional digital linear image.Type: GrantFiled: October 30, 2007Date of Patent: November 16, 2010Assignee: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Patent number: 7673803Abstract: A planar laser illumination and imaging (PLIIM) based engine including; an engine housing having light transmission aperture; an image formation and detection module and having an image detection array and image formation optics with a field of view (FOV) extending from the image detection array, through the light transmission aperture and onto an object moving relative to the engine housing during object illumination and imaging operations; a planar laser illumination beam (PLIB) producing device, and having at least one visible laser illumination source arranged in relation to the image formation and detection module, for producing a planar light illumination beam (PLIB), and projecting the planar light illumination beam through light transmission aperture and oriented such that the plane of the PLIB is coplanar with the field of view of the image formation and detection module so that the object can be simultaneously illuminated by the planar light illumination beam and imaged within the field of view andType: GrantFiled: October 30, 2007Date of Patent: March 9, 2010Assignee: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark S. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Patent number: 7584893Abstract: A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital 1D images of objects transported through the 3D digital imaging volume. The image capturing and processing subsystem includes a plurality of illumination and imaging stations. Each station includes a 2D imaging array having optics providing a 3D field of view (FOV) on the 2D imaging array that is projected and extends into the 3D digital imaging volume, and one or more light emitting devices configured together to produce an illumination beam that extends into the 3D FOV of the 2D imaging array.Type: GrantFiled: October 30, 2007Date of Patent: September 8, 2009Assignee: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Patent number: 7581681Abstract: A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital 1D images of objects transported through the 3D imaging volume. The image capturing and processing subsystem includes a plurality of coplanar illumination and imaging stations.Type: GrantFiled: October 30, 2007Date of Patent: September 1, 2009Assignee: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Patent number: 7527200Abstract: A hand-supportable planar laser illumination and imaging (PLIIM) based device having hand-supportable housing with a light transmission aperture. A linear image formation and detection (IFD) module is mounted within the housing, and has a linear array of image detection elements and also image formation optics with a field of view (FOV). When an object is presented within the FOV, the FOV focuses a linear image of the object onto the linear array. At least one planar laser illumination module (PLIM) is mounted on the support platform, with the linear IFD module, and produces a planar laser illumination beam (PLIB) spatially aligned with respect to the FOV and arranged in a coplanar relationship with at least a portion of the FOV. A laser beam despeckling mechanism is integrated in the device, for reducing speckle-pattern noise observed the linear digital images formed and detected at the linear array of image detection elements.Type: GrantFiled: June 20, 2006Date of Patent: May 5, 2009Assignee: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20080135621Abstract: A hand-supportable planar laser illumination and imaging (PLIIM) based code symbol reader includes: a hand-supportable housing having light transmission aperture; a linear image formation and detection module having a linear image detection array; and a planar laser illumination beam (PLIB) producing device having at least one visible laser diode (VLD) for producing a planar light illumination beam (PLIB). The code symbol reader further includes image grabber for grabbing digital linear images formed and detected by the image formation and detection module, an image data buffer for buffering the digital linear images grabbed by the image grabber and constructing a two-dimensional image from a series of buffered linear digital images, and an image processing computer for processing the buffered two-dimensional digital image so as to read code symbols graphically represented in the two-dimensional digital linear image.Type: ApplicationFiled: October 30, 2007Publication date: June 12, 2008Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20080128508Abstract: A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital images of objects transported through the 3D imaging volume. The image capturing and processing subsystem includes a plurality of coplanar illumination and imaging stations.Type: ApplicationFiled: October 30, 2007Publication date: June 5, 2008Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20080128506Abstract: A hand-supportable planar laser illumination and imaging (PLIIM) based code symbol reader includes: a hand-supportable housing having light transmission aperture; a linear image formation and detection module having a linear image detection array; and a planar laser illumination beam (PLIB) producing device having at least one visible laser diode (VLD) for producing a planar light illumination beam (PLIB). The code symbol reader further includes image grabber for grabbing digital linear images formed and detected by the image formation and detection module, an image data buffer for buffering the digital linear images grabbed by the image grabber and constructing a two-dimensional image from a series of buffered linear digital images, and an image processing computer for processing the buffered two-dimensional digital image so as to read code symbols graphically represented in the two-dimensional digital linear image.Type: ApplicationFiled: October 30, 2007Publication date: June 5, 2008Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffrey Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20080128507Abstract: A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital images of objects transported through the 3D imaging volume. The image capturing and processing subsystem includes a plurality of illumination and imaging stations. Each station includes a 2D imaging array having optics providing a 3D field of view (FOV) on the 2D imaging array that is projected and extends into the 3D imaging volume, and one or more light emitting devices configured together to produce a illumination beam that extends into the 3D FOV of the 2D imaging array.Type: ApplicationFiled: October 30, 2007Publication date: June 5, 2008Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Micheal D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffrey Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20070012777Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: ApplicationFiled: June 20, 2006Publication date: January 18, 2007Inventors: Constantine Tsikos, C. Knowles, Xiaoxun Zhu, Michael Schnee, Ka Au, Allan Wirth, Timothy Good, Andrew Jankevics, Sankar Ghosh, Charles Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Dobbs, George Kolis, Mark Schmidt, Jeffery Yorsz, Patrick Giordano, Stephen Colavito, David Wilz, Barry Schwartz, Steven Kim, Dale Fisher, Jon Tassell
-
Patent number: 7070106Abstract: An Internet-based remote monitoring, configuration and service (RMCS) system capable of monitoring, configuring and servicing a planar laser illumination and imaging (PLIIM) based network. The network has one or more nodes and performs object identification and attribute acquisition functions. Each node is a PLIIM-based subsystem operably connected to a digital communications network interconnectable to the infrastructure of the Internet. The Internet-based RMCS system comprises a monitoring subsystem for remotely monitoring a set parameters associated with the PLIIM-based network. The set of parameters relate to network, system and/or subsystem characteristics of the PLIIM-based network. The RMCS also includes an analyzing subsystem for remotely analyzing the parameters to diagnose (i) performance failures in the PLIIM-based network, as well as (ii) the operation and performance of the PLIIM-based network.Type: GrantFiled: October 31, 2001Date of Patent: July 4, 2006Assignee: Metrologic Instruments, Inc.Inventors: C. Harry Knowles, Mark C. Schmidt, Xiaoxun Zhu, Shawn Defoney, Edward Skypala, Constantine J. Tsikos, Ka Man Au, Barry E. Schwartz, Allan Wirth, Andrew Jankevics, Timothy A. Good, Sankar Ghosh, Michael D. Schnee, George Kolis, Thomas Amundsen, Charles A. Naylor, Robert Blake, Russell Joseph Dobbs, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., William Svedas, Steven Y. Kim, Dale M. Fischer, Jon Van Tassell
-
Patent number: 6978936Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: GrantFiled: April 23, 2002Date of Patent: December 27, 2005Assignee: Metpologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Patent number: 6978935Abstract: A planar laser illumination and imaging (PLIIM) based system comprising a linear image formation and detection module having (i) an image sensing chip having a plurality of conductive pins establishing electrical interconnections with conductive elements within a chip mounting socket mounted on an electronic camera board, and (ii) image forming optics with a field of view. The system also includes a heat-exchanging structure, rigidly connected to the image formation optics, and having (i) a body portion provided with heat exchanging elements, (ii) a plurality of apertures through which the plurality of conductive pins on the image sensing chip pass to establish electrical interconnections with the conductive elements within the chip mounting socket, and (III) a plurality of mechanical elements for releasably engaging the package of the image sensing chip so as to rigidly maintain the image sensing chip in alignment with the image forming optics.Type: GrantFiled: April 23, 2002Date of Patent: December 27, 2005Assignee: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark S. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Patent number: 6918541Abstract: An object identification and attribute information tracking and linking computer system for connection to the communication medium of a data communication network.Type: GrantFiled: March 5, 2002Date of Patent: July 19, 2005Assignee: Metrologic Instruments, Inc.Inventors: C. Harry Knowles, Sankar Ghosh, Shawn Defoney, Edward Skypala, Mark C. Schmidt
-
Patent number: 6915954Abstract: A programmable data element queuing, handling, processing and linking device integrated into an object identification and attribute acquisition system operated in either a singulated or non-singulated object transport environment. The programmable data element queuing, handling, processing and linking device comprises a first data element input unit, a second data element input unit, and a programmable data element tracking and linking module. The first data element input unit receives object identity data from an object identity data producing source embodied within the object identification and attribute acquisition system. The second data element input unit receives corresponding object attribute data from an object attribute data producing source embodied within the object identification and attribute acquisition system.Type: GrantFiled: February 27, 2002Date of Patent: July 12, 2005Assignee: Metrologic Instruments, Inc.Inventors: C. Harry Knowles, Shawn Defoney, Edward Skypala, Mark C. Schmidt
-
Publication number: 20030218070Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: ApplicationFiled: May 16, 2002Publication date: November 27, 2003Applicant: Metrologic Instruments, Inc.Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20030080190Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: ApplicationFiled: May 23, 2002Publication date: May 1, 2003Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20030080192Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: ApplicationFiled: June 6, 2002Publication date: May 1, 2003Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20030071124Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: ApplicationFiled: April 30, 2002Publication date: April 17, 2003Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
-
Publication number: 20030052175Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.Type: ApplicationFiled: April 23, 2002Publication date: March 20, 2003Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell