Patents by Inventor Edward Van Sieleghem

Edward Van Sieleghem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11335825
    Abstract: A single-photon avalanche diode (SPAD) is disclosed. In one aspect, the SPAD comprises an inner doped region, a geometrical structure of a boundary of the inner doped region rotationally symmetric in a horizontal direction of a substrate; at least one outer doped region connected to a second terminal, the at least one outer doped region arranged to at least partially enclose the inner doped region and the outer doped region comprising dopant implantations of a different type than the inner doped region; a lowly doped depletion volume arranged to surround the inner doped region, a depth of the lowly doped depletion volume extending from the top surface of the substrate into the substrate being larger than a depth of the at least one outer doped region, and when a reverse bias is applied to an anode, an electric field peak around the inner doped region being formed to enable impact ionization and multiplication of charges.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: May 17, 2022
    Assignees: IMEC vzw, Katholieke Universiteit Leuven
    Inventor: Edward Van Sieleghem
  • Patent number: 11239265
    Abstract: Example embodiments relate to single-photon avalanche diode detector (SPAD) arrays. One embodiment includes a SPAD array that includes a silicon substrate, a plurality of primary electrodes, and a plurality of secondary electrodes. Each of the primary electrodes includes a semiconductor material of a first doping type, extends in the silicon substrate in a first direction, and has a rotationally symmetric cross-section in a first plane perpendicular to the first direction. The plurality of secondary electrodes includes a semiconductor material of a second doping type and extends parallel to the primary electrodes in the silicon substrate. Further, the silicon substrate includes a doped upper field redistribution layer, a doped lower field redistribution layer, and a doped depletion layer arranged between the upper field redistribution layer and the lower field redistribution layer.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: February 1, 2022
    Assignees: IMEC VZW, Katholieke Universiteit Leuven, KU LEUVEN R&D
    Inventor: Edward Van Sieleghem
  • Publication number: 20210119069
    Abstract: A single-photon avalanche diode (SPAD) is disclosed. In one aspect, the SPAD comprises an inner doped region, a geometrical structure of a boundary of the inner doped region rotationally symmetric in a horizontal direction of a substrate; at least one outer doped region connected to a second terminal, the at least one outer doped region arranged to at least partially enclose the inner doped region and the outer doped region comprising dopant implantations of a different type than the inner doped region; a lowly doped depletion volume arranged to surround the inner doped region, a depth of the lowly doped depletion volume extending from the top surface of the substrate into the substrate being larger than a depth of the at least one outer doped region, and when a reverse bias is applied to an anode, an electric field peak around the inner doped region being formed to enable impact ionization and multiplication of charges.
    Type: Application
    Filed: September 23, 2020
    Publication date: April 22, 2021
    Inventor: Edward Van Sieleghem
  • Publication number: 20210005645
    Abstract: Example embodiments relate to single-photon avalanche diode detector (SPAD) arrays. One embodiment includes a SPAD array that includes a silicon substrate, a plurality of primary electrodes, and a plurality of secondary electrodes. Each of the primary electrodes includes a semiconductor material of a first doping type, extends in the silicon substrate in a first direction, and has a rotationally symmetric cross-section in a first plane perpendicular to the first direction. The plurality of secondary electrodes includes a semiconductor material of a second doping type and extends parallel to the primary electrodes in the silicon substrate. Further, the silicon substrate includes a doped upper field redistribution layer, a doped lower field redistribution layer, and a doped depletion layer arranged between the upper field redistribution layer and the lower field redistribution layer.
    Type: Application
    Filed: June 25, 2020
    Publication date: January 7, 2021
    Inventor: Edward Van Sieleghem