Patents by Inventor Edward W. Boyd

Edward W. Boyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100098433
    Abstract: One embodiment provides an Ethernet Passive Optical Network (EPON) system for clock transport. The system includes a reference clock configured to generate a frequency-reference signal, an optical line terminal (OLT) coupled to the reference clock, and an optical network unit (ONU). The OLT includes a clock generator configured to generate an OLT clock based on at least the frequency-reference signal. The ONU includes an optical transceiver, a clock recovery module, and a clock output mechanism. The optical transceiver is configured to transmit optical signals to and receive optical signals from the OLT. The clock-recovery module is configured to recover the frequency-reference signal from the received optical signals. The clock output mechanism is configured to output the recovered frequency-reference signal, thus facilitating transport of the frequency-reference signal over the EPON.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 22, 2010
    Applicant: TEKNOVUS, INC.
    Inventors: Edward W. Boyd, Hidehiko Shibuya
  • Publication number: 20100098407
    Abstract: One embodiment provides a system that performs protection switching in an Ethernet passive optical network (EPON), which includes an optical line terminal (OLT) and at least one optical network unit (ONU). The system is configured with at least one redundant component for the OLT and/or ONUs, wherein the redundant component can be optical or electrical, and can be a port, line card or link. The system provides protection by detecting a failure, and switching automatically to the redundant components to reduce service disruption time. The protection switching comprises: preserving the existing configuration over the loss of at least one of a multiple-point control protocol (MPCP) message; an operations, administration and maintenance (OAM) message; and a signal on the physical layer. The system recovers from the failure without performing ONU discovery.
    Type: Application
    Filed: September 23, 2009
    Publication date: April 22, 2010
    Applicant: TEKNOVUS, INC.
    Inventors: Sanjay Goswami, Lawrence D. Davis, Edward W. Boyd
  • Publication number: 20100098412
    Abstract: One embodiment provides an intelligent passive optical network (PON) node. The intelligent PON node includes a number of optical line terminal (OLT)-side transceivers coupled to a first optical fiber, a number of optical network unit (ONU)-side transceivers, a switching mechanism configured to couple the OLT-side transceivers and the ONU-side transceivers, and a controller configured to control the coupling operation of the switching mechanism. The OLT-side transceivers are configured to transmit optical signals on a number of wavelength channels to and receive optical signals on a number of wavelength channels from the OLT. A respective ONU-side transceiver is configured to transmit optical signals to and receive optical signals from a downstream PON.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 22, 2010
    Applicant: TEKNOVUS, INC.
    Inventors: Edward W. Boyd, Stephen M. Johnson
  • Patent number: 7664019
    Abstract: One embodiment of the present invention provides a system for forwarding packets in an Ethernet passive optical network (EPON) which includes a central node and at least one remote node. During operation, the system associates a logical link identifier (LLID) to a logical link between the central node and a remote node, wherein the logical link corresponds to a priority level based on a certain service level agreement (SLA). After receiving a packet to be forwarded to a remote node, the system then determines the value of one or more fields within the packet which is used to indicate a priority level for the packet. Subsequently, the system assigns an LLID to the packet based on the value of the one or more fields, thereby facilitating differentiated service qualities within the EPON.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 16, 2010
    Assignee: Teknovus, Inc.
    Inventors: Edward W. Boyd, Thyagarajan Subramanian, Lawrence D. Davis
  • Patent number: 7630639
    Abstract: One embodiment of the present invention provides a system that facilitates transmission control in an Ethernet passive optical network, which includes a central node and at least one remote node, and wherein a remote node implements a data-link layer and a physical layer. During operation, the system starts by receiving, at the physical layer of a remote node, a word which is communicated from the data-link layer of the remote node, wherein the word may be a data word or an idle word. The system then delays the word for a pre-determined amount of time before allowing the word to be transmitted by a transmitter, thereby providing time for turning the transmitter on or off. The system also turns the transmitter on or off based on the content of the received words.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: December 8, 2009
    Assignee: Teknovus, Inc.
    Inventors: Glen Kramer, Edward W. Boyd
  • Publication number: 20090262937
    Abstract: One embodiment provides a system for decrypting data frames in an Ethernet passive optical network (EPON). During operation, the system maintains a local cipher counter at a local node, and receives from a remote node a data frame which is encrypted based on a remote input block and a session key. The remote input block is constructed based on the remote cipher counter and a remote block counter. The system updates the local cipher counter based on a received field located in a preamble of the data frame, truncates the local cipher counter by discarding a number of least significant bits, and constructs for the received data frame a local input block based on the truncated local cipher counter, the received field, and a local block counter. The system then decrypts the data frame based on the local input block and the session key.
    Type: Application
    Filed: March 31, 2009
    Publication date: October 22, 2009
    Applicant: TEKNOVUS, INC.
    Inventors: Ryan E. Hirth, Edward W. Boyd, Ngo Thanh Ho
  • Patent number: 7590139
    Abstract: One embodiment of the present invention provides a system for accommodating time-division multiplexing (TDM) traffic in an Ethernet passive optical network (EPON). During operation, the system receives data from an upstream TDM channel at a remote node and stores received data in a segmentation buffer. The system encapsulates the data stored in the segmentation buffer into a packet. The system receives a message from the central node granting a TDM transmission window starting at a designated time. The system further communicates the packet to an upstream transmission mechanism within the remote node before the designated time, and transmits to the central node an upstream frame containing the packet at the designated time.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Teknovus, Inc.
    Inventors: Edward W. Boyd, Ryan E. Hirth, Duncan C. Gray, Sourigno Outsama
  • Patent number: 7525982
    Abstract: One embodiment of the present invention provides a method for facilitating asymmetric line rates in an Ethernet passive optical network (EPON) which includes a central node and at least one remote node. During operation, the system provides a downstream code-group clock, wherein each cycle thereof corresponds to a code group transmitted from the central node to a remote node. The system also provides an upstream code-group clock, wherein each cycle thereof corresponds to a code group received at the central node from a remote node. In addition, the system provides a multi-point control protocol (MPCP) clock, wherein the frequency ratio of the MPCP clock to the downstream code-group clock is different from the frequency ratio of the MPCP clock to the upstream code-group clock, thereby allowing the downstream transmission to be performed at a faster line rate than the upstream transmission line rate.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: April 28, 2009
    Assignee: Teknovus, Inc.
    Inventors: Glen Kramer, Edward W. Boyd, Ryan E. Hirth, Lawrence D. Davis, Lowell D. Lamb
  • Patent number: 7505459
    Abstract: One embodiment of the present invention provides a system that performs packets switching in a passive optical network which includes a central node and at least one remote node. After receiving a packet, the system obtains a first set of results by performing a first lookup based on a first set of values derived from the packet. The system also obtains a second set of results by performing a second lookup based on a second set of values derived from the packet. Next, the system merges the first set of results and the second set of results, and produces a merged value. The system then obtains a subsequent result by performing a subsequent lookup with the merged value. If the packet is a downstream packet, the system derives a logical identifier corresponding to one or more remote nodes from the subsequent result. The system then incorporates the logical identifier into the packet and transmits the packet to one or more remote nodes.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: March 17, 2009
    Assignee: Teknovus, Inc.
    Inventor: Edward W. Boyd
  • Publication number: 20090047018
    Abstract: One embodiment of the present invention provides a system that performs layer 3 (L3) aware switching in an Ethernet passive optical network (EPON) which includes a central node and at least one remote node. During operation, the system maintains a set of mapping information which indicates a correspondence relationship between a logical link identifier of a remote node, a medium access control (MAC) address for a subscriber coupled to the remote node, and an IP address for the subscriber. Upon receiving a packet which contains an IP address, the system selectively attaches a proper logical link identifier to the packet based on the mapping information and the IP address contained in the packet, thereby allowing only one proper remote node to receive the packet.
    Type: Application
    Filed: October 27, 2008
    Publication date: February 19, 2009
    Applicant: Teknovus
    Inventors: Edward W. Boyd, Russell Smith
  • Patent number: 7443850
    Abstract: One embodiment of the present invention provides a system that performs layer 3 (L3) aware switching in an Ethernet passive optical network (EPON) which includes a central node and at least one remote node. During operation, the system maintains a set of mapping information which indicates a correspondence relationship between a logical link identifier of a remote node, a medium access control (MAC) address for a subscriber coupled to the remote node, and an IP address for the subscriber. Upon receiving a packet which contains an IP address, the system selectively attaches a proper logical link identifier to the packet based on the mapping information and the IP address contained in the packet, thereby allowing only one proper remote node to receive the packet.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: October 28, 2008
    Assignee: Teknovus, Inc.
    Inventors: Edward W. Boyd, Russell Smith
  • Patent number: 7349537
    Abstract: One embodiment of the present invention provides a system that decrypts downstream data in an Ethernet passive optical network (EPON). During operation, the system receives a data frame which is encrypted based on a remote input block and a session key, wherein the remote input block is constructed based on a remote cipher counter and a remote block counter. The system adjusts a local cipher counter based on a received checksum located in a preamble of the data frame, wherein the local cipher counter is substantially synchronized with the remote cipher counter. In addition, the system truncates the local cipher counter by discarding n least significant bits thereof. The system then constructs a local input block based on the truncated cipher counter and a local block counter for the received data frame. Next, the system decrypts the data frame based on the local input block and the session key.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: March 25, 2008
    Assignee: Teknovus, Inc.
    Inventors: Glen Kramer, Lawrence D. Davis, Edward W. Boyd, Ryan E. Hirth, Ngo Thahn Ho
  • Patent number: 7321597
    Abstract: One embodiment of the present invention provides a system that performs remote network management over an Ethernet connection between a local node and a remote node, wherein the Ethernet connection uses x-bit/y-bit (xB/yB) encoding. During operation, the system accepts a local Ethernet bit stream containing x-bit words at the local node. The system forms a second bit stream which carries network management information. The system then selectively encodes the x-bit words from the local Ethernet bit stream into y-bit words according to the bits from the second bit stream, thereby forming a third bit stream comprising y-bit words, wherein the third bit stream carries both information from the Ethernet bit stream and information from the second bit stream. The system then transmits the third bit stream on a physical medium from the local node to the remote node.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: January 22, 2008
    Assignee: Jeknouus, Inc.
    Inventors: Hung Nguyen, Edward W. Boyd
  • Patent number: 6967949
    Abstract: One embodiment of the present invention provides a system that facilitates forwarding of packets in an Ethernet passive optical network (EPON), which includes a central node and at least one remote node. During operation, the system assigns a logical link identifier (LLID) to a remote node, wherein an LLID corresponds to a logical link between the central node and a remote node. The system also associates an LLID with a port of a switch within the central node, wherein the switch has a number of ports; wherein a port may be a physical port or a virtual port; and wherein the number of ports on the switch are divided into network-side ports and user-side ports. Upon receiving a downstream packet from a network-side port, the system searches a mapping table to determine whether one or more field values of the downstream packet correspond to any LLIDs or ports.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: November 22, 2005
    Assignee: Teknovus, Inc.
    Inventors: Lawrence D. Davis, Edward W. Boyd, Glen Kramer
  • Patent number: 6801547
    Abstract: A technique to identify a response cell in a ranging grant procedure is disclosed herein. The format of the response cell reduces the probability of erroneous response cell detection. The response cell is a conventional ATM cell whose payload includes multiple cell delineation bytes (CDBs).
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: October 5, 2004
    Assignee: Terawave Communications, Inc.
    Inventors: Edward W. Boyd, Ross G. Werner, Wai Y. Kan, Robert J Deri, Jamie Riotto, Barry A. Perkins
  • Patent number: 6700903
    Abstract: A system and method for enabling an optical network unit (ONU) in a passive optical network to scramble data and send the scrambled data upstream to an optical line termination unit (OLT). In passive optical networks the clocks in the OLT and ONU are synchronized by recovering the clock from the data signal. However, the clocks may drift when no data transitions occur on a long string of data. In addition, the OLT may require data transitions to ensure proper adjusting of its receive threshold. In either circumstance, collectively called Loss of Synchronization, the data may not be received correctly by the receiver and the transmitter will need to resend the data. In the present invention, the transmitter will vary the seed used in the scrambling operation. The use of a different seed per each transmission significantly reduces the chances that a loss of synchronization will occur.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: March 2, 2004
    Assignee: Terawave Communications, Inc.
    Inventors: Edward W Boyd, Douglas R Puchalski, Barry A Perkins