Patents by Inventor Edward W. Merrill

Edward W. Merrill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8865788
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 21, 2014
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Patent number: 8563623
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: October 22, 2013
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Patent number: 8529254
    Abstract: The occlusal position of a patient is measured by means of light transmission through a layer of a polysiloxane which is not cross-linked. This material forms an exceptionally accurate impression of a patient's bite essentially instantaneously and enables subsequent recording and analysis of the bite in a matter of minutes.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: September 10, 2013
    Inventors: Philip L. Millstein, Edward W. Merrill
  • Patent number: 8263676
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: September 11, 2012
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun K. Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Publication number: 20120092679
    Abstract: The occlusal position of a patient is measured by means of light transmission through a layer of a polysiloxane which is not cross-linked. This material forms an exceptionally accurate impression of a patient's bite essentially instantaneously and enables subsequent recording and analysis of the bite in a matter of minutes.
    Type: Application
    Filed: November 22, 2011
    Publication date: April 19, 2012
    Inventors: Philip L. Millstein, Edward W. Merrill
  • Publication number: 20120060852
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Application
    Filed: November 14, 2011
    Publication date: March 15, 2012
    Applicants: Massachusetts Institute of Technology, The General Hospital Corporation
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Patent number: 8066512
    Abstract: The occlusal position of a patient is measured by means of light transmission through a layer of a polysiloxane which is not cross-linked. This material forms an exceptionally accurate impression of a patient's bite essentially instantaneously and enables subsequent recording and analysis of the bite in a matter of minutes.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: November 29, 2011
    Inventors: Philip L. Millstein, Edward W. Merrill
  • Patent number: 7858671
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: December 28, 2010
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Publication number: 20100099056
    Abstract: The occlusal position of a patient is measured by means of light transmission through a layer of a polysiloxane which is not cross-linked. This material forms an exceptionally accurate impression of a patient's bite essentially instantaneously and enables subsequent recording and analysis of the bite in a matter of minutes.
    Type: Application
    Filed: October 22, 2008
    Publication date: April 22, 2010
    Inventors: Philip L. Millstein, Edward W. Merrill
  • Publication number: 20090105364
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Application
    Filed: December 12, 2008
    Publication date: April 23, 2009
    Applicants: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Patent number: 7008634
    Abstract: Described are compositions with tethered growth effector molecules, and methods of using these compositions for growing cells and tissues. Growth effector molecules, including growth factors and extracellular matrix molecules, are flexibly tethered to a solid substrate. The compositions can be used either in vitro or in vivo to grow cells and tissues. By tethering the growth factors, they will not diffuse away from the desired location. By making the attachment flexible, the growth effector molecules can more naturally bind to cell surface receptors. A significant feature of these compositions and methods is that they enhance the biological response to the growth factors. The method also offers other advantages over the traditional methods, in which growth factors are delivered in soluble form: (1) the growth factor is localized to a desired target cell population; (2) significantly less growth factor is needed to exert a biologic response.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: March 7, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Linda G. Cima, Edward W. Merrill, Philip R. Kuhl
  • Publication number: 20040214997
    Abstract: Disclosed are compositions with tethered growth effector molecules, and methods of using these compositions for growing cells and tissues. Growth effector molecules, including growth factors and extracellular matrix molecules, are flexibly tethered to a solid substrate. The compositions can be used either in vitro or in vivo to grow cells and tissues. By tethering the growth factors, they will not diffuse away from the desired location. By making the attachment flexible, the growth effector molecules can more naturally bind to cell surface receptors. A significant feature of these compositions and methods is that they enhance the biological response to the growth factors. The new method also offers other advantages over the traditional methods, in which growth factors are delivered in soluble form: (1) the growth factor is localized to a desired target cell population; (2) significantly less growth factor is needed to exert a biologic response.
    Type: Application
    Filed: March 3, 1995
    Publication date: October 28, 2004
    Inventors: LINDA G. CIMA, EDWARD W. MERRILL, PHILIP R. KUHL
  • Patent number: 6786933
    Abstract: A medical prosthesis for use within a body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radial. Preferred prosthesis exhibits reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacturing wear resistant medical prosthesis and materials used therein are also provided.
    Type: Grant
    Filed: April 26, 2001
    Date of Patent: September 7, 2004
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Publication number: 20040132856
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Application
    Filed: October 30, 2003
    Publication date: July 8, 2004
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Charles R. Bragdon, Daniel O. O'Connor, Premnath Vonugopalan
  • Patent number: 6641617
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: November 4, 2003
    Assignees: The General Hospital Corp., Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Patent number: 6616982
    Abstract: Methods are provided for the fabrication of hydrophilic coatings on hydrophobic surfaces. In one embodiment, a polyethylene oxide (PEO) coating is fabricated on the surface of a polymeric material by contacting the surface with a methacrylic acid or acrylic acid monomer. The monomer first is reacted, for example by irradiation with an electron beam, to polymerize and covalently attach the monomer to the surface, to improve the hydrophilicity of the polymeric material. A coating of PEO molecules is subsequently attached to the polymer surface by hydrogen bond complexation. The PEO coating then may be covalently grafted onto the surface, for example, by irradiation grafting with an electron beam. The covalent grafting of a coating of the methacrylic or acrylic monomers to the surface greatly improves the wettability of the surface, and facilitates the covalent or non-covalent attachment of a coating of PEO to the polymer surface.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: September 9, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, Susan S. Allgor, Gladys C. Leung
  • Publication number: 20030119935
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Application
    Filed: July 18, 2002
    Publication date: June 26, 2003
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Publication number: 20030105182
    Abstract: A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
    Type: Application
    Filed: July 18, 2002
    Publication date: June 5, 2003
    Inventors: Edward W. Merrill, William H. Harris, Murali Jasty, Orhun Muratoglu, Charles R. Bragdon, Daniel O. O'Connor, Premnath Venugopalan
  • Publication number: 20030087099
    Abstract: Methods are provided for the fabrication of hydrophilic coatings on hydrophobic surfaces. In one embodiment, a polyethylene oxide (PEO) coating is fabricated on the surface of a polymeric material by contacting the surface with a methacrylic acid or acrylic acid monomer. The monomer first is reacted, for example by irradiation with an electron beam, to polymerize and covalently attach the monomer to the surface, to improve the hydrophilicity of the polymeric material. A coating of PEO molecules is subsequently attached to the polymer surface by hydrogen bond complexation. The PEO coating then may be covalently grafted onto the surface, for example, by irradiation grafting with an electron beam. The covalent grafting of a coating of the methacrylic or acrylic monomers to the surface greatly improves the wettability of the surface, and facilitates the covalent or non-covalent attachment of a coating of PEO to the polymer surface.
    Type: Application
    Filed: November 26, 2002
    Publication date: May 8, 2003
    Applicant: Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, Gladys Leung
  • Patent number: 6509098
    Abstract: Methods are provided for the fabrication of hydrophilic coatings on hydrophobic surfaces. In one embodiment, a polyethylene oxide (PEO) coating is fabricated on the surface of a polymeric material by contacting the surface with a methacrylic acid or acrylic acid monomer. The monomer first is reacted, for example by irradiation with an electron beam, to polymerize and covalently attach the monomer to the surface, to improve the hydrophilicity of the polymeric material. A coating of PEO molecules is subsequently attached to the polymer surface by hydrogen bond complexation. The PEO coating then may be covalently grafted onto the surface, for example, by irradiation grafting with an electron beam. The covalent grafting of a coating of the methacrylic or acrylic monomers to the surface greatly improves the wettability of the surface, and facilitates the covalent or non-covalent attachment of a coating of PEO to the polymer surface.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: January 21, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Edward W. Merrill, Susan S. Allgor, Gladys C. Leung