Patents by Inventor Edward William Mead

Edward William Mead has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957935
    Abstract: Some embodiments are directed to an image director of a patient monitoring system to obtain calibration images of a calibration sheet or other calibration object at various orientations and locations. The images are then stored and processed to calculate camera parameters defining the location and orientation of the image detector and identifying internal characteristics of the image detector, and the information are stored. The patient monitoring system can be re-calibrated by using the image detector to obtain an additional image of a calibration sheet or calibration object. The additional image and the stored camera parameters are then used to detect any apparent change in the internal characteristics of the image detector (10)(S6-4).
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: April 16, 2024
    Assignee: VISION RT LIMITED
    Inventors: Edward William Mead, Ivan Daniel Meir
  • Publication number: 20230181933
    Abstract: A method of calibrating a monitoring system (10,14) is described in which a calibration phantom (70) is located with its center located approximately at the isocenter of a treatment room through which a treatment apparatus (16) is arranged to direct radiation, wherein the surface of the calibration phantom (70) closest to an image capture device (72) of the monitoring system (10,14) is inclined approximately 45° relative to the camera plane of an image capture device of the monitoring system. Images of the calibration phantom (70) are then captured using the image capture device (72) and the images are processed to generate a model of the imaged surface of the calibration phantom.
    Type: Application
    Filed: February 9, 2023
    Publication date: June 15, 2023
    Applicant: VISION RT LIMITED
    Inventors: Edward William MEAD, Ivan Daniel MEIR
  • Patent number: 11612766
    Abstract: A method of calibrating a monitoring system (10,14) is described in which a calibration phantom (70) is located with its center located approximately at the isocenter of a treatment room through which a treatment apparatus (16) is arranged to direct radiation, wherein the surface of the calibration phantom (70) closest to an image capture device (72) of the monitoring system (10,14) is inclined approximately 45° relative to the camera plane of an image capture device of the monitoring system. Images of the calibration phantom (70) are then captured using the image capture device (72) and the images are processed to generate a model of the imaged surface of the calibration phantom.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: March 28, 2023
    Assignee: VISION RT LIMITED
    Inventors: Edward William Mead, Ivan Daniel Meir
  • Publication number: 20230041706
    Abstract: Some embodiments are directed to an image director of a patient monitoring system to obtain calibration images of a calibration sheet or other calibration object at various orientations and locations. The images are then stored and processed to calculate camera parameters defining the location and orientation of the image detector and identifying internal characteristics of the image detector, and the information are stored. The patient monitoring system can be re-calibrated by using the image detector to obtain an additional image of a calibration sheet or calibration object. The additional image and the stored camera parameters are then used to detect any apparent change in the internal characteristics of the image detector (10)(S6-4).
    Type: Application
    Filed: October 18, 2022
    Publication date: February 9, 2023
    Applicant: VISION RT LIMITED
    Inventors: Edward William MEAD, Ivan Daniel MEIR
  • Patent number: 11504552
    Abstract: Some embodiments are directed to an image director of a patient monitoring system to obtain calibration images of a calibration sheet or other calibration object at various orientations and locations. The images are then stored and processed to calculate camera parameters defining the location and orientation of the image detector and identifying internal characteristics of the image detector, and the information are stored. The patient monitoring system can be re-calibrated by using the image detector to obtain an additional image of a calibration sheet or calibration object. The additional image and the stored camera parameters are then used to detect any apparent change in the internal characteristics of the image detector (10)(S6-4).
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: November 22, 2022
    Assignee: VISION RT LIMITED
    Inventors: Edward William Mead, Ivan Daniel Meir
  • Publication number: 20220096870
    Abstract: A method of calibrating a monitoring system (10,14) is described in which a calibration phantom (70) is located with its center located approximately at the isocenter of a treatment room through which a treatment apparatus (16) is arranged to direct radiation, wherein the surface of the calibration phantom (70) closest to an image capture device (72) of the monitoring system (10,14) is inclined approximately 45° relative to the camera plane of an image capture device of the monitoring system. Images of the calibration phantom (70) are then captured using the image capture device (72) and the images are processed to generate a model of the imaged surface of the calibration phantom.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Applicant: VISION RT LIMITED
    Inventors: Edward William MEAD, Ivan Daniel MEIR
  • Patent number: 11224765
    Abstract: A method of calibrating a monitoring system (10,14) is described in which a calibration phantom (70) is located with its center located approximately at the isocenter of a treatment room through which a treatment apparatus (16) is arranged to direct radiation, wherein the surface of the calibration phantom (70) closest to an image capture device (72) of the monitoring system (10,14) is inclined approximately 45° relative to the camera plane of an image capture device of the monitoring system. Images of the calibration phantom (70) are then captured using the image capture device (72) and the images are processed to generate a model of the imaged surface of the calibration phantom.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: January 18, 2022
    Assignee: VISION RT LIMITED
    Inventors: Edward William Mead, Ivan Daniel Meir
  • Publication number: 20210128951
    Abstract: A method of calibrating a monitoring system (10,14) is described in which a calibration phantom (70) is located with its center located approximately at the isocenter of a treatment room through which a treatment apparatus (16) is arranged to direct radiation, wherein the surface of the calibration phantom (70) closest to an image capture device (72) of the monitoring system (10,14) is inclined approximately 45° relative to the camera plane of an image capture device of the monitoring system. Images of the calibration phantom (70) are then captured using the image capture device (72) and the images are processed to generate a model of the imaged surface of the calibration phantom.
    Type: Application
    Filed: July 31, 2018
    Publication date: May 6, 2021
    Applicant: VISION RT LIMITED
    Inventors: Edward William MEAD, Ivan Daniel MEIR
  • Patent number: 10441818
    Abstract: A patient monitoring system for monitoring a patient undergoing radiotherapy comprising a projector operable to project a pattern of light onto a patient undergoing radiation treatment, a patient restraint operable to restrain the patient relative to a treatment apparatus, an image detector operable to obtain images of the patient, and a model generation module operable to process images of the patient obtained by the image detector to generate a model of the surface of a portion of the patient, wherein at least a portion of the patient restraint is colored and the model generation module is inhibited from generating a model of the colored portion of the patient restraint.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: October 15, 2019
    Assignee: VISION RT LIMITED
    Inventors: Michael James Tallhamer, Adrian Roger William Barrett, James Mathew Hughes, II, Edward William Mead, Ivan Daniel Meir
  • Publication number: 20190247677
    Abstract: Some embodiments are directed to an image director of a patient monitoring system to obtain calibration images of a calibration sheet or other calibration object at various orientations and locations. The images are then stored and processed to calculate camera parameters defining the location and orientation of the image detector and identifying internal characteristics of the image detector, and the information are stored. The patient monitoring system can be re-calibrated by using the image detector to obtain an additional image of a calibration sheet or calibration object. The additional image and the stored camera parameters are then used to detect any apparent change in the internal characteristics of the image detector (10)(S6-4).
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Applicant: VISION RT LIMITED
    Inventors: Edward William MEAD, Ivan Daniel MEIR
  • Patent number: 10315054
    Abstract: Some embodiments are directed to an image director of a patient monitoring system to obtain calibration images of a calibration sheet or other calibration object at various orientations and locations. The images are then stored and processed to calculate camera parameters defining the location and orientation of the image detector and identifying internal characteristics of the image detector, and the information are stored. The patient monitoring system can be re-calibrated by using the image detector to obtain an additional image of a calibration sheet or calibration object. The additional image and the stored camera parameters are then used to detect any apparent change in the internal characteristics of the image detector (10) (S6-4).
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: June 11, 2019
    Assignee: VISION RT LIMITED
    Inventors: Edward William Mead, Ivan Daniel Meir
  • Publication number: 20170368370
    Abstract: A patient monitoring system for monitoring a patient undergoing radiotherapy comprising a projector operable to project a pattern of light onto a patient undergoing radiation treatment, a patient restraint operable to restrain the patient relative to a treatment apparatus, an image detector operable to obtain images of the patient, and a model generation module operable to process images of the patient obtained by the image detector to generate a model of the surface of a portion of the patient, wherein at least a portion of the patient restraint is colored and the model generation module is inhibited from generating a model of the colored portion of the patient restraint.
    Type: Application
    Filed: September 7, 2017
    Publication date: December 28, 2017
    Inventors: Michael James TALLHAMER, Adrian Roger William BARRETT, James Mathew HUGHES, II, Edward William MEAD, Ivan Daniel MEIR
  • Publication number: 20170319874
    Abstract: Some embodiments are directed to an image director of a patient monitoring system to obtain calibration images of a calibration sheet or other calibration object at various orientations and locations. The images are then stored and processed to calculate camera parameters defining the location and orientation of the image detector and identifying internal characteristics of the image detector, and the information are stored. The patient monitoring system can be re-calibrated by using the image detector to obtain an additional image of a calibration sheet or calibration object. The additional image and the stored camera parameters are then used to detect any apparent change in the internal characteristics of the image detector (10) (S6-4).
    Type: Application
    Filed: November 9, 2015
    Publication date: November 9, 2017
    Inventors: Edward William MEAD, Ivan Daniel MEIR
  • Publication number: 20170296845
    Abstract: A patient monitoring system for monitoring a patient undergoing radiotherapy comprising a projector operable to project a pattern of light onto a patient undergoing radiation treatment, a patient restraint operable to restrain the patient relative to a treatment apparatus, an image detector operable to obtain images of the patient, and a model generation module operable to process images of the patient obtained by the image detector to generate a model of the surface of a portion of the patient, wherein at least a portion of the patient restraint is colored and the model generation module is inhibited from generating a model of the colored portion of the patient restraint.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Michael James TALLHAMER, Adrian Roger William BARRETT, James Mathew HUGHES, II, Edward William MEAD, Ivan Daniel MEIR
  • Patent number: 9789338
    Abstract: A patient monitoring system for monitoring a patient undergoing radiotherapy comprising a projector operable to project a pattern of light onto a patient undergoing radiation treatment, a patient restraint operable to restrain the patient relative to a treatment apparatus, an image detector operable to obtain images of the patient, and a model generation module operable to process images of the patient obtained by the image detector to generate a model of the surface of a portion of the patient, wherein at least a portion of the patient restraint is colored and the model generation module is inhibited from generating a model of the colored portion of the patient restraint.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: October 17, 2017
    Assignee: VISION RT LTD.
    Inventors: Michael James Tallhamer, Adrian Roger William Barrett, James Mathew Hughes, II, Edward William Mead, Ivan Daniel Meir