Patents by Inventor Edwin C. Thomsen

Edwin C. Thomsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11649992
    Abstract: A process for liquefying a process gas that includes introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises a single stage comprising dual multilayer regenerators located axially opposite to each other.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: May 16, 2023
    Assignees: Battelle Memorial Institute, Emerald Energy NW, LLC
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay
  • Publication number: 20220057119
    Abstract: A process for liquefying a process gas that includes introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises a single stage comprising dual multilayer regenerators located axially opposite to each other.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Applicants: Battlelle Memorial Institute, Emerald Energy NW, LLC
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay
  • Patent number: 11193696
    Abstract: A process for liquefying a process gas that includes introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises a single stage comprising dual multilayer regenerators located axially opposite to each other.
    Type: Grant
    Filed: March 27, 2018
    Date of Patent: December 7, 2021
    Assignees: Battelle Memorial Institute, Emerald Energy NW, LLC
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay
  • Patent number: 11009290
    Abstract: A process for liquefying hydrogen gas into liquid hydrogen that includes: continuously introducing hydrogen gas into an active magnetic regenerative refrigerator module, wherein the module has one, two, three or four stages, wherein each stage includes a bypass flow heat exchanger that receives a bypass helium heat transfer gas from a cold side of a low magnetic or demagnetized field section that includes a magnetic refrigerant bed at a hydrogen gas first cold inlet temperature and discharges hydrogen gas or fluid at a first cold exit temperature; wherein sensible heat of the hydrogen gas is entirely removed by the bypass flow heat exchanger in the one stage module or a combination of the bypass flow heat exchangers in the two, three or four stage module, the magnetic refrigerant bed operates at or below its Curie temperature throughout an entire active magnetic regeneration cycle, and a temperature difference between the bypass helium heat transfer first cold inlet temperature and the hydrogen gas first c
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: May 18, 2021
    Assignees: Battelle Memorial Institute, Emerald Energy NW, LLC
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay, Jun Cui
  • Publication number: 20190390899
    Abstract: A process for liquefying a process gas comprising: introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises (i) a high magnetic field section in which the heat transfer fluid flows from a cold side to a hot side through at least one magnetized bed of at least one magnetic refrigerant, (ii) a first no heat transfer fluid flow section in which the bed is demagnetized, (iii) a low magnetic or demagnetized field section in which the heat transfer fluid flows from a hot side to a cold side through the demagnetized bed, and (iv) a second no heat transfer fluid flow section in which the bed is magnetized; continuously diverting a bypass portion of the heat transfer fluid from the cold side of the low magnetic or demagnetized field section into a bypass flow heat exchanger at a first cold inlet temperature; and continuously introducing the process gas into the bypass flow heat exchanger at a first hot inlet temperature and discharging the process gas or liquid fr
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Applicant: Battelle Memorial Institute
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay, Jun Cui
  • Patent number: 10443928
    Abstract: A process for liquefying a process gas that includes: introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that includes a low magnetic or demagnetized field section; continuously diverting a bypass portion of the heat transfer fluid from a cold side of the low magnetic or demagnetized field section into a bypass flow heat exchanger at a first cold inlet temperature; and continuously introducing the process gas into the bypass flow heat exchanger at a first hot inlet temperature and discharging the process gas or liquid from the bypass flow heat exchanger at a first cold exit temperature; wherein the temperature difference between bypass heat transfer first cold inlet temperature and the process gas first cold exit temperature is 1 to 5 K.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: October 15, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay, Jun Cui
  • Patent number: 10381667
    Abstract: A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: August 13, 2019
    Assignee: Battelle Memorial Institute
    Inventors: Edwin C. Thomsen, David M. Reed, Brian J. Koeppel, Kurtis P. Recknagle, Vilayanur V. Viswanathan, Alasdair J. Crawford, Zimin Nie, Wei Wang, Vincent L. Sprenkle, Bin Li
  • Publication number: 20180283740
    Abstract: An apparatus comprising: an active magnetic regenerative regenerator comprising multiple successive layers, wherein each layer comprises an independently compositionally distinct magnetic refrigerant material having Curie temperatures 18-22 K apart between successively adjacent layers, and the layers are arranged in successive Curie temperature order and magnetic refrigerant material mass order with a first layer having the highest Curie temperature layer and highest magnetic refrigerant material mass and the last layer having the lowest Curie temperature layer and lowest magnetic refrigerant material mass.
    Type: Application
    Filed: March 27, 2018
    Publication date: October 4, 2018
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay
  • Publication number: 20170288243
    Abstract: A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
    Type: Application
    Filed: March 29, 2017
    Publication date: October 5, 2017
    Inventors: Edwin C. Thomsen, David M. Reed, Brian J. Koeppel, Kurtis P. Recknagle, Vilayanur V. Viswanathan, Alasdair J. Crawford, Zimin Nie, Wei Wang, Vincent L. Sprenkle, Bin Li
  • Publication number: 20170241706
    Abstract: A process for liquefying a process gas comprising: introducing a heat transfer fluid into an active magnetic regenerative refrigerator apparatus that comprises (i) a high magnetic field section in which the heat transfer fluid flows from a cold side to a hot side through at least one magnetized bed of at least one magnetic refrigerant, (ii) a first no heat transfer fluid flow section in which the bed is demagnetized, (iii) a low magnetic or demagnetized field section in which the heat transfer fluid flows from a hot side to a cold side through the demagnetized bed, and (iv) a second no heat transfer fluid flow section in which the bed is magnetized; continuously diverting a bypass portion of the heat transfer fluid from the cold side of the low magnetic or demagnetized field section into a bypass flow heat exchanger at a first cold inlet temperature; and continuously introducing the process gas into the bypass flow heat exchanger at a first hot inlet temperature and discharging the process gas or liquid fr
    Type: Application
    Filed: February 21, 2017
    Publication date: August 24, 2017
    Applicant: Battelle Memorial Institute
    Inventors: Jamie D. Holladay, Kerry D. Meinhardt, Evgueni Polikarpov, Edwin C. Thomsen, John Barclay, Jun Cui
  • Publication number: 20110185899
    Abstract: Methods for abatement of antimony-containing, arsenic-containing and/or phosphorous-containing impurities in fuel gas that is derived from a carbonaceous source can include contacting the fuel gas with an absorbent comprising a capture compound. The capture compound has one or more alkali metals, one or more alkaline earth metals, or a combination of one or more alkali and alkaline earth metals. The fuel gas impurities are reacted with the capture compound, which can be used alone or dispersed on the adsorbent, at a temperature greater than or equal to approximately 300° C. to form solid capture products comprising antimony, arsenic, or phosphorous and the alkali or alkaline earth metal.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Applicant: Battelle Memorial Institute
    Inventors: Larry R. Pederson, Olga A. Marina, Christopher A. Coyle, Gregory W. Coffey, Edwin C. Thomsen, Liyu Li, Carolyn N. Cramer, Gary L. McVay
  • Patent number: 7758992
    Abstract: The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: July 20, 2010
    Assignee: Battelle Memorial Institute
    Inventors: Peter C. Rieke, Gregory W. Coffey, Larry R. Pederson, Olga A. Marina, John S. Hardy, Prabhaker Singh, Edwin C. Thomsen
  • Publication number: 20100143818
    Abstract: The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.
    Type: Application
    Filed: November 14, 2003
    Publication date: June 10, 2010
    Inventors: Peter C. Rieke, Gregory W. Coffey, Larry R. Pederson, Olga A. Marina, John S. Hardy, Prabhaker Singh, Edwin C. Thomsen